235 research outputs found

    Precision Measurement of the 6He Half-Life and the Weak Axial Current in Nuclei

    Get PDF
    Studies of 6He beta decay along with tritium can play an important role in testing ab-initio nuclear wave-function calculations and may allow for fixing low-energy constants in effective field theories. Here, we present an improved determination of the 6He half-life to a relative precision of 3x10^(-4). Our value of 806.89 \pm 0.11(stat)^{+0.23}_{-0.19}(syst) ms resolves a major discrepancy between previous measurements. Calculating the statistical rate function we determined the ft-value to be 803.04 ^{+0.26}_{-0.23} s. The extracted Gamow-Teller matrix element agrees within a few percent with ab-initio calculations.Comment: 5 pages, 2 figures, published in Physical Review Letter

    Precision Measurement of the 6He Half-Life and the Weak Axial Current in Nuclei

    Get PDF
    Background: The β decays of 3H and 6He can play an important role in testing nuclear wave-function calculations and fixing low-energy constants in effective-field theory approaches. However, there exists a large discrepancy between previous measurements of the 6He half-life. Purpose: Our measurement aims at resolving this long-standing discrepancy in the 6He half-life and providing a reliable ft value and Gamow-Teller matrix element for comparison with theoretical ab initio calculations. Method: We measured the 6He half-life by counting the β-decay electrons with two scintillator detectors operating in coincidence. Results: The measured 6He half-life is 806.89±0.11 stat-0.19+0.23syst ms corresponding to a relative precision of 3×10-4. Calculating the statistical rate function we determined the ft value to be 803.04-0.23+0.26 s. Conclusions: Our result resolves the previous discrepancy by providing a higher-precision result with careful analysis of potential systematic uncertainties. The result provides a reliable basis for future precision comparisons with ab initio calculations. © 2012 American Physical Society

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRβ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types

    The Germ Cell Nuclear Proteins hnRNP G-T and RBMY Activate a Testis-Specific Exon

    Get PDF
    The human testis has almost as high a frequency of alternative splicing events as brain. While not as extensively studied as brain, a few candidate testis-specific splicing regulator proteins have been identified, including the nuclear RNA binding proteins RBMY and hnRNP G-T, which are germ cell-specific versions of the somatically expressed hnRNP G protein and are highly conserved in mammals. The splicing activator protein Tra2β is also highly expressed in the testis and physically interacts with these hnRNP G family proteins. In this study, we identified a novel testis-specific cassette exon TLE4-T within intron 6 of the human transducing-like enhancer of split 4 (TLE4) gene which makes a more transcriptionally repressive TLE4 protein isoform. TLE4-T splicing is normally repressed in somatic cells because of a weak 5′ splice site and surrounding splicing-repressive intronic regions. TLE4-T RNA pulls down Tra2β and hnRNP G proteins which activate its inclusion. The germ cell-specific RBMY and hnRNP G-T proteins were more efficient in stimulating TLE4-T incorporation than somatically expressed hnRNP G protein. Tra2b bound moderately to TLE4-T RNA, but more strongly to upstream sites to potently activate an alternative 3′ splice site normally weakly selected in the testis. Co-expression of Tra2β with either hnRNP G-T or RBMY re-established the normal testis physiological splicing pattern of this exon. Although they can directly bind pre-mRNA sequences around the TLE4-T exon, RBMY and hnRNP G-T function as efficient germ cell-specific splicing co-activators of TLE4-T. Our study indicates a delicate balance between the activity of positive and negative splicing regulators combinatorially controls physiological splicing inclusion of exon TLE4-T and leads to modulation of signalling pathways in the testis. In addition, we identified a high-affinity binding site for hnRNP G-T protein, showing it is also a sequence-specific RNA binding protein

    NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network.

    Get PDF
    Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease.Nat Commun 2018 Apr 10; 9(1):1373

    A comparison of customised and prefabricated insoles to reduce risk factors for neuropathic diabetic foot ulceration: a participant-blinded randomised controlled trial.

    Get PDF
    UNLABELLED: BACKGROUND: Neuropathic diabetic foot ulceration may be prevented if the mechanical stress transmitted to the plantar tissues is reduced. Insole therapy is one practical method commonly used to reduce plantar loads and ulceration risk. The type of insole best suited to achieve this is unknown. This trial compared custom-made functional insoles with prefabricated insoles to reduce risk factors for ulceration of neuropathic diabetic feet. METHOD: A participant-blinded randomised controlled trial recruited 119 neuropathic participants with diabetes who were randomly allocated to custom-made functional or prefabricated insoles. Data were collected at issue and six month follow-up using the F-scan in-shoe pressure measurement system. Primary outcomes were: peak pressure, forefoot pressure time integral, total contact area, forefoot rate of load, duration of load as a percentage of stance. Secondary outcomes were patient perceived foot health (Bristol Foot Score), quality of life (Audit of Diabetes Dependent Quality of Life). We also assessed cost of supply and fitting. Analysis was by intention-to-treat. RESULTS: There were no differences between insoles in peak pressure, or three of the other four kinetic measures. The custom-made functional insole was slightly more effective than the prefabricated insole in reducing forefoot pressure time integral at issue (27% vs. 22%), remained more effective at six month follow-up (30% vs. 24%, p=0.001), but was more expensive (UK £656 vs. £554, p<0.001). Full compliance (minimum wear 7 hours a day 7 days per week) was reported by 40% of participants and 76% of participants reported a minimum wear of 5 hours a day 5 days per week. There was no difference in patient perception between insoles. CONCLUSION: The custom-made insoles are more expensive than prefabricated insoles evaluated in this trial and no better in reducing peak pressure. We recommend that where clinically appropriate, the more cost effective prefabricated insole should be considered for use by patients with diabetes and neuropathy. TRIAL REGISTRATION: Clinical trials.gov (NCT00999635). Note: this trial was registered on completion

    Symbiotic Associations in the Phenotypically-Diverse Brown Alga Saccharina japonica

    Get PDF
    The brown alga Saccharina japonica (Areschoug) Lane, Mayes, Druehl et Saunders is a highly polymorphic representative of the family Laminariaceae, inhabiting the northwest Pacific region. We have obtained 16S rRNA sequence data in symbiont microorganisms of the typical form (TYP) of S. japonica and its common morphological varieties, known as “longipes” (LON) and “shallow-water” (SHA), which show contrasting bathymetric distribution and sharp morphological, life history traits, and ecological differences. Phylogenetic analysis of the 16S rRNA sequences shows that the microbial communities are significantly different in the three forms studied and consist of mosaic sets of common and form-specific bacterial lineages. The divergence in bacterial composition is substantial between the TYP and LON forms in spite of their high genetic similarity. The symbiont distribution in the S. japonica forms and in three other laminarialean species is not related to the depth or locality of the algae settlements. Combined with our previous results on symbiont associations in sea urchins and taking into account the highly specific character of bacteria-algae associations, we propose that the TYP and LON forms may represent incipient species passing through initial steps of reproductive isolation. We suggest that phenotype differences between genetically similar forms may be caused by host-symbiont interactions that may be a general feature of evolution in algae and other eukaryote organisms. Bacterial symbionts could serve as sensitive markers to distinguish genetically similar algae forms and also as possible growth-promoting inductors to increase algae productivity

    Sexual dimorphism in cancer.

    Get PDF
    The incidence of many types of cancer arising in organs with non-reproductive functions is significantly higher in male populations than in female populations, with associated differences in survival. Occupational and/or behavioural factors are well-known underlying determinants. However, cellular and molecular differences between the two sexes are also likely to be important. In this Opinion article, we focus on the complex interplay that sex hormones and sex chromosomes can have in intrinsic control of cancer-initiating cell populations, the tumour microenvironment and systemic determinants of cancer development, such as the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment
    corecore