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Precision measurement of the 6He half-life and the weak axial current in nuclei

A. Knecht,1,* R. Hong,1 D. W. Zumwalt,1 B. G. Delbridge,1 A. Garcı́a,1 P. Müller,2 H. E. Swanson,1 I. S. Towner,3 S. Utsuno,1

W. Williams,2,† and C. Wrede1,‡
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Seattle, Washington 98195, USA
2Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

(Received 15 June 2012; published 20 September 2012)

Background: The β decays of 3H and 6He can play an important role in testing nuclear wave-function calculations
and fixing low-energy constants in effective-field theory approaches. However, there exists a large discrepancy
between previous measurements of the 6He half-life.
Purpose: Our measurement aims at resolving this long-standing discrepancy in the 6He half-life and providing
a reliable f t value and Gamow-Teller matrix element for comparison with theoretical ab initio calculations.
Method: We measured the 6He half-life by counting the β-decay electrons with two scintillator detectors
operating in coincidence.
Results: The measured 6He half-life is 806.89 ± 0.11stat

+0.23
−0.19syst ms corresponding to a relative precision of

3 × 10−4. Calculating the statistical rate function we determined the f t value to be 803.04+0.26
−0.23 s.

Conclusions: Our result resolves the previous discrepancy by providing a higher-precision result with careful
analysis of potential systematic uncertainties. The result provides a reliable basis for future precision comparisons
with ab initio calculations.

DOI: 10.1103/PhysRevC.86.035506 PACS number(s): 23.40.−s, 27.20.+n

I. INTRODUCTION

Precision measurements of electroweak processes in light
nuclei can provide important tests of our understanding
of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
coupling constant, gA, had to be “quenched.” For the sd-shell
nuclei this difference amounted to about 30% with respect
to that measured in free neutron decay [5,6]. In addition,
when charge-exchange reactions were used to explore a large
fraction of the Gamow-Teller strength sum rule, evidence also
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pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
These two decays, then, can play an important role in testing
the accuracy of nuclear wave-function calculations [4,13,14]
or, as suggested in Ref. [15], in fixing low-energy constants in
effective-field-theory calculations [1].

In this paper we present a more detailed description of the
high-precision experimental determination of the half-life and
f t value for 6He published in Ref. [16]. Except for a small
branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
half-life was previously determined by several works compiled
in Table I and shown in Fig. 1.

As can be seen, the values spread over a range much wider
than expected from the claimed uncertainties, which makes the
currently reported average and precision of 806.7 ± 1.5 ms
[36] unreliable. Averaging the five values shown in the
inset in Fig. 1 with uncertainties below 1% and scaling the
uncertainty by the square root of the χ2 per degrees of
freedom (DOF)—as advised by the Particle Data Group in
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TABLE I. Compilation of all previously obtained 6He half-life
values.

Year Half-life (ms) Ref. Year Half-life (ms) Ref.

1946 850 ± 50 [18] 1956 852 ± 16 [19]
1947 870 ± 60 [20] 1958 830 ± 20 [21]
1948 820 ± 60 [22] 1962 797 ± 3 [23]
1949 823 ± 13 [24] 1962 862 ± 17 [25]
1952 860 ± 30 [26] 1963 830 ± 20 [27]
1952 840 ± 30 [28] 1974 808.1 ± 2.0 [29]
1953 830 ± 30 [30] 1981 798.1 ± 1.0 [31]
1954 799 ± 3 [32] 1982 805.4 ± 2.0 [33]
1955 850 ± 30 [34] 2002 810 ± 8 [35]

such cases [37]—results in 800.6 ± 2.0 ms. As emphasized
by the author of the last precision measurement in 1982 [33],
this needs to be resolved by improved and higher-precision
experiments.

II. EXPERIMENTAL SETUP

We produced 6He using the tandem Van de Graaff ac-
celerator available at the Center for Experimental Nuclear
Physics and Astrophysics of the University of Washington. A
deuteron beam impinged on molten lithium held in a stainless
steel cup, producing 6He via the reaction 7Li(2H,3He)6He.
The 6He atoms subsequently diffused out into vacuum. A
detailed description of the 6He source, which can deliver more
than 109 atoms/s to experiments, can be found in Ref. [38].
The 6He atoms were transferred from the source through
a turbomolecular pump to a low-background experimental
area. The measuring volume consisted of a 35-mm-diam,
381-mm-long tube made of stainless steel sealed on one side by
a 254-μm thin copper foil and on the other by a spring-loaded,
Viton O-ring-sealed valve. Randomly distributed over our
measurement period of 5 days we inserted a 19-mm-diam,

FIG. 1. (Color online) Compilation of the measured 6He half-
lives given in Table I. The dashed blue band shows the half-life
adopted in Ref. [36] from the average of the two values found in
Refs. [29,33] and used in compilations ever since. The inset shows
the five values with uncertainties below 1% [23,29,31–33] with the
dashed red band depicting the value for the 6He half-life obtained in
this paper.

FIG. 2. Experimental setup with two thin scintillators placed
in front of a measuring volume which can be closed off by a
spring-loaded valve. The stainless steel insert was used to determine
possible systematic effects due to diffusion of 6He into the walls of
the measuring volume.

283-mm-long stainless steel cylinder suspended in the center
of the tube by four screws. With the stainless steel insert we
increased the wall collision frequency of 6He atoms by about
80% and used those data to check for possible diffusion of the
6He atoms into the stainless steel surfaces. We took comparable
amounts of data with and without this insert. Figure 2 shows a
schematic drawing of the setup.

Directly in front of the measuring volume we placed
two identical, 2.5-mm-thick plastic scintillators separated by
3.2 cm registering the βs from the decay of 6He penetrating
through the copper foil. The plastic scintillators were coupled
via light guides to Hamamatsu photomultiplier tubes model
R1450. Their output signals passed through timing filter
amplifiers (Ortec model 474) providing ∼100-ns-long pulses
with a ∼30-ns rise time. Two discriminators (LeCroy model
821) with thresholds right above the electronic noise provided
the logic trigger signals. We formed the coincidence of those
two signals resulting in a single 25-ns-long logic pulse. We
passed this pulse through four gate generators (LeCroy model
222) providing signals of fixed, nonextendable dead times of
lengths 1.9819(81), 3.9990(81), 6.0026(83), and 7.9758(83)
μs. The details of the dead-time determination are given
in Sec. IV. Subsequently, the four signals were fed into a
CAMAC-based scaler (LeCroy model 2551) together with
the original coincidence signal and the signals from a 1- and
100-kHz clock. The signal from the 1-kHz clock also triggered
the readout of the scaler module via the software package
JAM [39], thereby providing 1-ms time stamps to our data
stream. The 100-kHz clock was used to detect potential scaler
reading problems. These data were written to event files for
offline analysis. A schematic of the whole electronics chain is
shown in Fig. 3.

The timing sequence of the measurement was as follows:
The data were acquired in 24-s-long measurement cycles.
During a period of 8 s we directed the deuteron beam onto
the lithium target and the outlet of the turbomolecular pump
was connected to our measuring volume while the valve to the
roughing pump was closed. For the following 16 s, thereby
completing one cycle, we deflected the deuteron beam at the
low-energy end of the accelerator, closed the spring-loaded
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FIG. 3. Schematic of the electronics setup.

valve at the back of the measuring volume, and measured the
6He half-life directly by observing the decay curve. At the
same time the valve to the roughing pump opened and the 6He
exhaust was pumped away. During the last 100 ms of the 16-s
decay time both valves were open in order to provide some
pumping to the measuring volume.

With separate electronics, we performed pulse height mea-
surements at the beginning of the measurements to determine
our thresholds. We triggered the analog-to-digital converter
(ADC) on the coincidence signal and took the pulse height
spectra for both scintillators. Fitting the peak for the minimum
ionizing particles we determined that ∼99% of the pulses (in
each of the detectors separately) are above our threshold. The
thresholds were estimated to be ∼30 keV based on the average
energy deposition in the detector of ∼300 keV for a minimum
ionizing particle.

III. DATA PROCESSING

We read the binary JAM files into ROOT [40] and created
“raw histograms” with 1-ms bin size for each channel. At
this stage, two main data defects could be detected: missed
readings due to the data acquisition (DAQ) computer not
reading out the scaler values and incorrect readings due to the
scaler values updating while being read. Both of the defects
were readily identified in the data stream. As the scaler retained
the actual data unaffected by the missed and incorrect readings
we were able to correct for them by distributing the counts of
the next correct reading across the affected readings. From
the raw histograms we created “differential histograms” for
the different channels by calculating the differences between
subsequent readings. The systematic uncertainties associated
with this data correction are discussed in Sec. V.

To further reduce remaining data defects and improve the
performance of the fitting at low statistics, we increased the
bin size in the differential histograms to 10 ms. At the end
we corrected for the dead-time losses on a cycle-by-cycle
basis by calculating the true rate R0 in each time bin from
the measured rate R using the measured dead times τd : R0 =
R/(1 − Rτd ) [41]. Because we took data at different deuteron
beam intensities to study decay-rate-dependent effects, the
data are finally grouped into five different initial rate classes:
<40, 40–50, 50–60, 60–70, and 70–80 kHz.

IV. DEAD-TIME MEASUREMENT

The dead time of the different channels was determined
using the source and pulser method [42]. We placed a 90Sr
source in front of the two scintillators to act as the random
source. The pulser was running at 10 kHz. The signals from
the source and the pulser were merged at the stage of the long
gate generator. In a first step, we measured the rate with the
random source only. After 15–20 min of data acquisition, we
read the total counts in each channel through the scaler. The
total acquisition time was determined by a 10-Hz clock. In
the next step, we performed the same measurement with the
pulser on and determined the dead time by calculating [42]

τd = 1

Rr

(
1 −

√
Rpr − Rr

Rp

)
, (1)

where Rr is the rate of random signal, Rp is the rate of the
pulser, and Rpr is the rate of the mixed signal.

The intrinsic dead time from the start of the detector pulses
to the generation of the long gates was inspected with an
oscilloscope. It amounted to ∼130 ns. As our long gates
generated by the four gate generators were much longer than
any preceding gates and signals, only the length of those four
gates which we measured using the source and pulser method
was relevant for the dead-time correction. Several dead-time
measurements were performed following the 6He decay data
taking. The results of those runs were consistent with each
other. We averaged the different runs resulting in the dead
times 1.9819(81), 3.9990(81), 6.0026(83), and 7.9758(83) μs.

V. DATA ANALYSIS

Figure 4 shows the histogram for the full counting cycle for
the data with initial rates <40 kHz, 2-μs dead time, and the
stainless steel insert out. The step and wiggle right after 7.9 s
is due to valve movement, when the valve of the decay volume
is closed and the valve to the roughing pump is opened (we
started the timing 100 ms after the beam turned on). It takes
∼200 ms for this effect to die out. In addition, because the
systematic uncertainty due to the dead-time correction grows

FIG. 4. Histogram for a full 6He counting cycle for the data with
initial rates <40 kHz and the stainless steel insert out. The insert
zooms into the transition point from beam on to beam off at which
the valve in front of the measuring volume closes and the valve to the
roughing pump opens.
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FIG. 5. (Color online) 6He decay curve for the data with 2-μs
dead time, initial rates <40 kHz and the stainless steel insert out with
the corresponding residuals. The χ 2/DOF of the fit is 1578.2/1562.

rapidly with rate we delayed the starting point of our fit in
each of the rate groups such that for the highest rate in that
group the initial rate lies at 32 kHz. For the group with initial
rates <40 kHz, the starting point is at 8260 ms—beyond the
first 200 ms affected by the valve motion. The end point of
the fit lies at 23 900 ms. The fit was performed using the
modified χ2 method outlined in Ref. [43]. Figure 5 shows the
decay curve for the same data as in Fig. 4. Also shown is
a fit to the function f (t) = N{exp [−(t − t0)/τ ] + b}, where
the lifetime τ and the background b are free parameters
while N is set by the normalization of the fitting function
and the total counts of the histogram. The lower panel gives
the corresponding residuals. We cross-checked our fit results,
performing both regular χ2 and maximum-likelihood fits. In
addition, we performed the fits on simulated data consisting
of ∼108 random events distributed with a half-life of 807 ms
and our measured background. Dead-time effects were applied
to the time-ordered events and then corrected in the same
manner as for our experimental data. The results of the different
methods for both the experimental and simulated data are listed
in Table II, showing their consistency and no particular bias.

Figure 6 shows a compilation of all the half-life fit results
for the different rate groups and stainless steel insert in and
out. The four different dead-time channels were combined,

TABLE II. 6He half-life fitting results of the data shown in
Fig. 5 and the simulated data using different methods. In our simple
implementation of the maximum-likelihood fit the increased number
of counts due to the dead-time correction are treated as an increase in
statistics resulting in a slightly lower error with respect to the other
methods.

Method Expt. data (ms) Simulated data (ms)

Modified χ 2 806.969 ± 0.114 807.019 ± 0.096
Regular χ 2 806.970 ± 0.114 807.025 ± 0.096
Max. likelihood 806.974 ± 0.113 807.023 ± 0.095

FIG. 6. (Color online) 6He half-life fit results for the different
rate groups with the initial rates restrained to 32 kHz. Only statistical
errors are given. The squares (circles) correspond to the stainless steel
insert in (out) data. The dashed (solid) line shows the constant fit to
the insert in (out) data with χ 2/DOF of 1.6/4 (3.4/3). The results of
the constant fits correspond to the averages given in Table III.

performing a weighted average and keeping the smallest of
the statistical uncertainties. Table III gives the final results
from the averages of the different rate groups. The individual
dead-time channels were combined to yield the two average
values for the two cases corresponding to the stainless steel
insert in and out of the measuring volume. These two values
are used below for an estimation of the potential diffusion of
6He atoms into the stainless steel surfaces.

VI. SYSTEMATIC UNCERTAINTIES

In Table IV we give our estimates of systematic shifts
and uncertainties that are described in detail in the following
paragraphs. In several cases we used a simulation to determine
the magnitude of the systematic uncertainty. The simulation
consisted of generating ∼1010 (statistical uncertainty of
0.01 ms on the half-life) random events distributed with a
half-life of 807 ms and our measured background. We then
applied to the time-ordered events the different systematic
effects and fit the data to determine the deviation from the
input half-life.

TABLE III. List of the different 6He half-lives obtained with
various dead times and for the cases of the stainless steel insert in
and out. The systematic shifts and uncertainties from Table IV are
not included.

Insert τd Results (ms) Average (ms)

Out ∼2 μs 807.01 ± 0.11 807.03 ± 0.11
∼4 μs 807.03 ± 0.11 807.03 ± 0.11
∼6 μs 807.08 ± 0.11 807.03 ± 0.11
∼8 μs 807.02 ± 0.11 807.03 ± 0.11

In ∼2 μs 807.20 ± 0.12 807.21 ± 0.12
∼4 μs 807.20 ± 0.12 807.21 ± 0.12
∼6 μs 807.21 ± 0.12 807.21 ± 0.12
∼8 μs 807.23 ± 0.12 807.21 ± 0.12
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TABLE IV. List of systematic shifts and uncertainties for our 6He
half-life measurement. We added the errors in quadrature to obtain
the total error. Where a second value is given it corresponds to the
measurements with the stainless steel insert in.

Source Shift (ms) Uncertainty (ms)

Dead-time correction 0.04
Dead-time drift 0 0.009
6He diffusion 0 +0.12/+0.22

−0

Gain shift −0.19 0.19
8Li contamination 0 +0

−0.007

Data correction 0 0.01
Afterpulsing 0 0.003
Clock accuracy 0.006 0.011
Background 0.046 0.004

Total −0.14 +0.23
−0.19 / +0.29

−0.19

The effect of the dead-time correction is large. The
correction shifts the half-life values by −9, −18, −27, and
−35 ms for the four different dead-time channels, respectively.
However, the agreement between the four values after the dead-
time correction lends confidence to its validity. The results for
the different dead-time channels are highly correlated and their
differences should only be influenced by the corresponding
loss in statistics, the uncertainty of which is given by σcorr =√

|σ 2
1 − σ 2

2 |. Since our data for different dead-time channels
are not completely correlated due to the data preselection, we
modified the data preselection procedure to result in the exact
same data set for all the dead-time channels. The results for
this particular data set are shown in Table V, together with the
differences between the 2-μs channel and the other channels
and their corresponding error as calculated according to the
description above. The differences are consistent with the loss
of statistics in the different dead-time channels.

The uncertainty on the measured dead times of ∼8 ns
translates directly into a systematic uncertainty on the half-life.
Figure 7 shows the dependence of the fitted half-life values on
changes in the dead time as determined from data. The linear
slope of −0.00485 ms/ns results in a systematic uncertainty
of 0.04 ms. Although a small and constant spread in the fixed
dead times does not introduce any systematic uncertainty, a
drift in the dead times obviously does. We tracked the length
of the 2-μs gate during 7 days on a digital oscilloscope.
Although we observed variations of ±2 ns on a daily basis there

TABLE V. List of the different 6He half-lives obtained with the
completely correlated data in four dead-time channels for the case
of the stainless steel insert out. The differences and corresponding
errors are given with respect to the 2-μs channel.

Insert τd Results (ms) Diff. (ms) σcorr (ms)

Out ∼2 μs 806.999 ± 0.169
∼4 μs 806.992 ± 0.170 − 0.007 0.017
∼6 μs 807.000 ± 0.171 0.001 0.025
∼8 μs 806.963 ± 0.172 − 0.036 0.030

FIG. 7. (Color online) Shifts in the fitted 6He half-life values
as a function of changes in the dead time used in the dead-time
correction. The data correspond to the averages of the different dead-
time channels. The slope amounts to −0.00485 ms/ns.

was no long-term drift detectable. We attribute a systematic
uncertainty of 0.009 ms in the half-life to these observed drifts.

Using a helium leak detector we studied the diffusion of
helium through the walls of the measuring volume and the
Viton O-ring of the valve at its end. While we did not observe
any diffusion through the walls, we did observe the diffusion
of helium atoms through the valve O-ring. Figure 8 shows the
resulting helium gas flow into the leak detector with one side of
the closed valve connected to its inlet and the other side filled
to 1 atm of helium. In our analysis we follow Refs. [44–46].
We found acceptable agreement between our data and the
predicted gas flow C(t) as given in Eq. (46) of Ref. [44],

C(t) = C0

[
1 + 2

∞∑
n=1

(−1)n exp

(
− (nπ )2 Dt

d2

)]
, (2)

for a diffusivity D = 10−5 cm2/s and a steady-state flow C0 =
5.7 × 10−8 mbar l/s. The thickness d of the O-ring in the valve
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FIG. 8. (Color online) Measured helium leak rates through the
Viton O-ring of the valve sealing our measurement volume. The plot
compiles three separate measurements. The line shows the prediction
for the gas flow according to Eq. (46) of Ref. [44] for a diffusivity
D = 10−5 cm2/s and a steady-state flow C0 = 5.7 × 10−8 mbar l/s.
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was measured to be 2.2 mm. There is an uncertainty of about
a factor of 2 in the extracted diffusivity due to the thickness
and about 20% on the steady-state flow due to the sensitivity
of the leak detector. From these two measurements we extract
a permeability K = 10−10 (cm3 at STP) mm s−1 mbar−1 cm−2

using an exposed area of A = 1.2 cm2 and a solid solubility
b = 10−6 (cm3 at STP) mbar−1 cm−3 for helium in the Viton
O-ring of our valve. Both of these values are in acceptable
agreement with values found in the literature. We neglect any
mass scaling of the measured flow by

√
m4He/m6He and an

exponentially decreased diffusivity because of the higher mass.
During our cycle length of T = 16 s the 6He atoms diffuse a
distance l ∼ 2

√
DT into the O-ring, resulting in an absorbed

gas volume Vgas = 2
√

DT Abp6He at the 6He partial pressure
p6He. The average loss rate over the full cycle thus amounts to

1

T

Nloss

N0
= 1

T
p0b

2
√

DT A

V0
= 5 × 10−9 s−1 (3)

with p0 = 1000 mbar, the total number of 6He atoms N0,
and the volume of our measuring volume V0 = 367 cm3. This
represents a negligible shift at our precision.

Although we were not able to observe any diffusion through
the walls of the measuring volume, we assume that some
diffusion does occur, leading to an additional loss channel.
The mean free path λ = 4V/A inside our measuring volume
V and surface area A leads to a wall-collision frequency
fc = v/λ given the velocity v of the atoms. Any time constant
1/τdiff associated with this loss channel scales linearly with the
wall-collision frequency fc = v/λ and leads to a measured
lifetime 1/τ = 1/τ6He + 1/τdiff . From the absence of any
significant difference between the two results listed in Table III
we conclude that τdiff � τ6He and the difference between
the two results is �(1/τ ) = 1/τin − 1/τout = (−2.8 ± 2.5) ×
10−7 ms−1 = 0.8/τdiff where the factor 0.8 is due to the 80%
increased wall-collision frequency with the insert in place.
We set the Gaussian probability density function to zero in
the nonphysical region [37] and calculate an upper limit on
1/τdiff at a 68% confidence limit (C.L.) of 2 × 10−7 ms−1.
This translates into a systematic uncertainty for the insert in
and out data of +0.22

−0 and +0.12
−0 ms, respectively.

Examining our highest rate data, we identified traces of
a small, rate-dependent shift, which is not fully accounted
for by our dead-time correction. Though pileup effects could
potentially be the cause of such a shift, based on the arguments
given below its effect is too small to contribute. Therefore,
because the values are shifted toward higher half-life values,
we attribute it to a negative decrease in gain with increased
rate in the photomultiplier tubes. For a potential reduction
in gain of 10% a fraction of 10−3 of the counts falls below
threshold as determined from the pulse-height measurements
performed at the beginning of the data taking. This would lead
to a systematic shift of the half-life of 0.16 ms as obtained from
our simulations and gives the approximate order of magnitude
of such potential gain shifts. To investigate the size of the rate-
dependent shift from our data constrained to 32 kHz itself, we
added a parameter k to our fitting function to model the effect of
a linear rate dependence by substituting in our fitting function
R(t) → R(t)[1 − kR(t)]. The resulting shift in the half-life

FIG. 9. (Color online) 6He half-life values as a function of delay
in the starting point of the fits. The two solid lines correspond to the
±1σ contours for the allowed variation (relative to the first data point)
that one expects from the loss in statistics for this correlated data set.

due to including the parameter k amounts to −0.19 ± 0.19 ms,
showing no significant rate-dependent effect after corrections.
We did not observe any difference in this shift between the
two data sets with the stainless steel insert in or out. As a
consistency check, we also examined our data by plotting the
fit results as a function of start time shown in Fig. 9. Because
the start time of the fit is different in each of the rate groups the
values are given as a function of “delay time” corresponding
to the delay of the start time in each rate group. The two solid
lines on that plot correspond to the ±1σ contours given by the
loss in statistics for this correlated data set. The data around
the rather large drop at about 3 s was studied in more detail
in search of a potential artifact but we concluded there is no
anomaly.

A potential contaminant in our system—apart from tritium,
which cannot influence our measurement—is the β emitter 8Li
(t1/2 = 838.40(36) ms, β− decay with end point 16.0 MeV
[47,48]) produced by the reaction 7Li(2H,1H)8Li. The Li
atoms are not expected to reach our counting station but
rather get trapped in the Li target or in the walls during the
many collisions (∼105) that occur before atoms can reach
the detection area. Nevertheless, in separate measurements
using both of our two thin scintillators used for the half-life
measurements but also a thick scintillator to measure the full
energy of the β particles, we scanned the deuteron beam energy
below the 7Li(2H,3He)6He reaction threshold of 5.8 MeV, but
above the one for 8Li of 0.25 MeV [48]. Although we still
observed a small production rate of a β emitter, both the energy
spectrum with an end point of 3.5 MeV and the extracted
half-life of 810 ± 5 ms clearly identify it as 6He. The observed
production agrees with a rough estimate of it being produced
by the reaction 6Li(n,1H)6He where the neutrons are produced
via 7Li(2H,n). Integrating the background-subtracted β-energy
spectrum above the 6He end point and operating at our nominal
deuteron beam energy we set an upper limit of 2 × 10−4 at 68%
C.L. on the fraction of possible 8Li contamination translating
to a systematic uncertainty of 0.007 ms.

Throughout the data taking we performed several back-
ground runs in which we kept the valve in front of the measur-
ing volume closed but otherwise operated the experiment just
like for the other runs. Our background runs are distributed
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FIG. 10. (Color online) Measured background rates during ded-
icated background runs (blue circles) and fitted background rates in
half-life data taking runs (red squares).

across all of the lifetime data and largely average out the
changes in background levels or deuteron beam current. While
we initially saw a significant contribution stemming from
6He β particles penetrating through the thin-walled stainless
steel bellows of our roughing pump, we were able to greatly
reduce that background by shielding the bellows with lead.
The data taken before this provision were not included in the
analysis. The measured background rate in background runs
and the fitted background rate in half-life data taking runs are
shown in Fig. 10. The average background rate of the data
taking runs was 0.8 ± 0.1 Hz, which is consistent with the
average of the rates of the background runs. Combining all
the background run data after shielding the bellows, we still
observed a small decay structure with a half-life of 507(27)
ms and an amplitude of 6.3(3) times the value of the constant
background in the background runs. Although this is most
probably still coming from 6He that is being pumped away,
it could also be the result of some beam-related activation.
Regardless of its origin, we studied this time-dependent
background by including it in the fitting function R(t) =
N (exp[−(t − t0)/τ ] + b{1 + A exp[−(t − t0)/τb]}), where A

is the ratio of the amplitude of the extra decay structure and the
background and τb is the lifetime of the extra decay structure.
We assumed that A was the same in the half-life data taking
runs as that in the background runs. By varying A and τb in the
range measured in the background runs, we concluded that the
extra decay structure results in a systematic shift of 0.046 ms
with an uncertainty of 0.004 ms.

We studied our data-correction procedure outlined in
Sec. III in detail using the simulation with the occurrences
of the different defects determined from the data. We did not
observe any significant shift within the statistical uncertainty
of the simulation. We also performed our fits on the data
without any data corrections, resulting in a consistent value.
We thus attribute a systematic uncertainty of 0.01 ms (the
statistical uncertainty of our simulation) to our data-correction
procedure.

In a dedicated effort we measured the time distribution
between two consecutive coincidence events using a time-to-
amplitude converter to search for spurious afterpulses owing to
electronic or instrumental effects. We found an excess of events
in the 4-μs full range setting leading to a 0.7-μs-wide peak

FIG. 11. Histogram of the time between two events as measured
with a time-to-amplitude converter in the range 0–4 μs. We see a
clear indication of spurious afterpulses at 0.75 μs.

at 0.75 μs sitting on top of an otherwise perfectly exponential
behavior [41] shown in Fig. 11. The probability of occurrence
of those excess events is 3 × 10−4. Although we are protected
from those excess events by the dead times, we performed a
simulation with such an excess centered at 3.5 μs to study its
potential influence. Table VI lists the results of that simulation
with the differences and associated uncertainty calculated as
in the discussion on dead time above. There is a small effect
visible in the 2-μs channel. As a conservative estimate of
the systematic uncertainty, we use the statistical uncertainty
of the simulation of 0.01 ms. The afterpulse height is about
four times the noise amplitude in Fig. 11, so the systematic
uncertainty for a frequency of occurrence at the detection limit
in the spectrum is 0.003 ms.

We measured the precision of our 1-kHz clock by compar-
ing the summed number of ticks over 16 days with respect to
the time provided by NIST [49]. The accumulated difference
amounts to −11 ± 1 s over a period of 1.37 × 106 s, which
corresponds to a shift of −8.03 ± 0.73 ppm. Owing to potential
changes in temperature, we assign an additional 13.35 ppm
to the frequency uncertainty. Therefore, we estimated the
systematic shift and uncertainty to be 0.006 ± 0.011 ms.

Pileup effects do not play a significant role in our measure-
ment because of our long dead times and low threshold. One
way that pileup would influence our result is if two coinciding
pulses below threshold result in a pulse above threshold. As
given in Sec. II, the threshold cuts away ∼1% of the electron
spectrum in each scintillator. The probability of two pulses
of length τp ≈ 100 ns coinciding at a given rate R is given
by Rτp. The probability that those two pulses are below
threshold is Ppile = 10−4. The correction that would need to be

TABLE VI. Obtained 6He half-life values in our afterpulse
simulation. The differences and corresponding uncertainties are with
respect to the 8-μs channel.

Channel Fitted half-life (ms) Diff. (ms) σcorr (ms)

∼2 μs 806.99984 ± 0.00957 0.0078 0.0020
∼4 μs 806.99348 ± 0.00964 0.0014 0.0016
∼6 μs 806.99331 ± 0.00971 0.0012 0.0011
∼8 μs 806.99209 ± 0.00977
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applied to the data thus takes the form R0 = R(1 − PpileRτp)
in order to obtain the true rate R0 given the measured
rate R. Combined with the dead-time correction, the final
correction (neglecting higher-order infinitesimals) looks like
R0 ≈ R/[1 − R(τd − Ppileτp)]. Therefore, this pileup effect
behaves like a ∼0.01-ns correction to the dead time, which
leads to a negligible shift in our half-life value of 5 × 10−5 ms.
Another effect of pileup would stem from the coincidence of
two pulses directly at the end of the long dead-time gate,
which would thus not free the trigger at the appropriate time
and would extend the dead time. However, this requires the
coincidence of three pulses, the probability of which is given
by (Rτp)2 corresponding to ∼10−5 at our highest rates. At the
highest rates this leads to an extension of the dead time by a
negligible 0.001 ns. Owing to both effects being negligible we
do not list them in Table IV.

VII. RESULTS

Because the result of our measurements with the stainless
steel insert is dominated by the systematic uncertainty owing
to a potential diffusion of the 6He atoms into the surface we
do not average the two values given in Table III. We report
the data from our measurements without the insert as our final
result, yielding a 6He half-life of

T1/2 = 806.89 ± 0.11stat
+0.23
−0.19syst ms, (4)

where the first error is statistical and the second systematic.
From this, we proceed to determine the f t value for the β

decay of 6He and extract the corresponding Gamow-Teller
matrix element. We calculated the Q value of the decay
to be 3.505208(53) MeV/c2 using the recent 6He mass
determination obtained in a Penning trap [50] and the value for
6Li [51]. This corresponds to a 4σ shift compared to previously
reported values [52]. The relation between the f t value and
the Gamow-Teller matrix element MGT is

f 	t(1 + δ′
R)(1 + δNS − δC) = K

G2
V

(
1 + �V

R

)
g2

A|MGT|2 (5)

following the definitions and notation of Ref. [53]. We set
the parameters δNS and δC to zero—or equivalently absorb
them into the definition of MGT—and calculated the radiative
correction δ′

R to be 1.0365(13)%. We adopted the value for
the parameters K/[G2

V (1 + �V
R )] = 6143.62 ± 1.66 s from

the world average of superallowed 0+ → 0+ nuclear β

decays [53]. The statistical rate function is given by f 	 =∫
F (Z,E)pE(E − E0)2f1(E)dE = f (1 + δs), where f is

the value of the integral in the absence of the shape-correction
function f1(E) and δs is the correction to it when including
f1(E). Here F (Z,E) is the Fermi function, p and E the elec-
tron momentum and energy, and E0 the end-point energy. We
obtain f = 995.224(68) yielding an f t value of 803.04+0.26

−0.23
s, where we added the statistical and systematic errors in
quadrature. To take into account the shape correction, we
performed shell-model calculations using the Cohen-Kurath
interaction [54] and with the Warburton-Brown interaction,
denoted PWBT in Ref. [55], adjusted to reproduce either the
experimental Gamow-Teller matrix element or the weak mag-

netism term, which in Holstein’s notation [56] is b = 68.4(7),
determined from the width of the 0+ → 1+ transition in 6Li
[57]. Both adjustments result in almost identical terms for the
statistical rate function and we obtain f 	 = 997.12(58). From
this we calculate the experimental value for the Gamow-Teller
matrix element in 6He β decay as |MGT| = 2.7491(10)/|gA|.
Using gA = −1.2701(25) [37] determined from the decay of
the free neutron, we get |MGT| = 2.1645(43).

VIII. COMPARISON WITH THEORY

Given the precision obtained in our measurement it is
worthwhile to itemize the improvements (both experimental
and theoretical) that affect the extraction of the Gamow-Teller
matrix element, MGT. Table VII lists the shifts that have oc-
curred in MGT arising from (a) an improvement in the Q-value
determination, (b) an improvement in the calculation of the
nucleus-dependent radiative correction, and (c) the inclusion
or not of the shape-correction function in the statistical rate
function calculation. The benchmark experimental f t value
used by theorists [4,13–15] up until now dates back to Ref. [58]
and a statistical rate function obtained from the tabulated
values of Wilkinson and Macefield [59]. By happenstance
our half-life measurement agrees with the value adopted in
Ref. [36] so no shifts owing to a revision in the half-life
are included in Table VII. First, the improvement in the
Q-value measurement leads to a 0.26% shift in the value of the
Gamow-Teller matrix element. Second, the tabulated values
of the statistical rate function of Wilkinson and Macefield
include the radiative correction calculated to order α. Today, it
is normal to extend these calculations to order Zα2 and Z2α3;
see, for example, Ref. [60]. These extensions give a small shift
in MGT of 0.03%. Third, the inclusion of a shape-correction
function induces a small −0.09% shift. That this shift is so
small in 6He β decay is a reflection of the fact that this transition
is very fast and the “allowed” approximation of ignoring the
spectrum shape works very well. In more retarded transitions
this correction would become more significant. The sum of
these three shifts is quite small, producing an experimental
MGT value that is in agreement, within errors, of the one
used previously in comparisons with theory. However, the
extraction of the experimental Gamow-Teller matrix element
given here stands on a more solid footing.

To make comparisons on the possible quenching of gA we
define an experimental axial coupling constant for 6He, g

6He
A ,

TABLE VII. List of shifts in the determination of the experimental
Gamow-Teller matrix element.

Source Shift in f 	 Shift in |MGT|
Shift in Q valuea − 0.51(10)% 0.26(5)%
Improved radiative correction 0.0299(6)%
Shape factor δs 0.19(6)% − 0.09(4)%

aShift owing to the recent mass measurement of 6He with �Q/Q =
−0.086% [50].
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TABLE VIII. Comparison between the experimental Gamow-Teller matrix element obtained in this work and the various
calculations. As our measurement determines the product |gA|MGT we present the comparison with theory by calculating
|g6He

A | = |gA|MGT/Mcalc
GT and comparing it to the value for the axial coupling constant obtained from free neutron decay

gA = −1.2701(25) [37]. LO stands for “leading order” and MEC for “meson-exchange currents.” Where two values are
given they represent the results of different calculations by changing, e.g., the wave functions (�T ) or nuclear potentials
(AV8′, TM′(99)) used. For the exact details on those changes and the calculations we refer to the provided references.

Matrix element Mcalc
GT

Ref. MGT (LO) MGT (incl. MEC) |g6He
A | (|g6He

A | − |gA|)/|gA|
[13] 2.254(5) (�T I) 2.284(5) (�T I) 1.204 − 5.2%

2.246(10) (�T II) 2.278(10) (�T II) 1.207 − 5.0%

[4] 2.283 (AV8′+TM′(99)) 1.204 − 5.2%
2.305 (AV8′) 1.193 − 6.1%

[14] 2.157(1) (�T I GFMC) 1.275 0.4%
2.207(3) (�T II GFMC) 1.246 − 1.9%

[15] 2.225(2) 2.198(7) 1.251 − 1.5%

This work |gA|MGT = 2.7491(10)

as

∣∣g6He
A

∣∣ = 1

Mcalc
GT

√
K

G2
V

(
1 + �V

R

)
f 	t(1 + δ′

R)(1 + δNS − δC)

= |gA|MGT

Mcalc
GT

(6)

using the calculated matrix elements Mcalc
GT . Table VIII shows

the comparison for the matrix elements between our exper-
imental result and the different calculations and the experi-
mental axial coupling constant for 6He and the one obtained
from the free neutron. The two most recent calculations are off
by about 1.5%, with older calculations showing a difference
of ∼5%. Clearly the need for a large quenching of gA as
observed in shell-model calculations of sd-shell nuclei is not
needed here. Only Ref. [4] gives the calculated width of the
analogous M1 transition in excellent agreement to within the
experimental uncertainty of 2%. Interesting measurements to
complement our result would be improved determinations of
the M1 width and of the muon capture rate on 6Li [61] to a
precision of �1%. The latter would directly test a possible
momentum-transfer dependence of the effective weak axial
coupling in nuclei [12].

IX. CONCLUSIONS AND SUMMARY

We performed the most precise measurement of the 6He
half-life of 806.89 ± 0.11stat

+0.23
−0.19syst ms, thereby improving

the precision over the currently reported value [36] by a
factor of 6. Our result is in good agreement with two of the
previous five values [29,33] with precisions of less than 1%
but deviates from the three others by up to 8.6σ [23,31,32].
Because the possibility of diffusion out of the target was not
directly addressed in these experiments we speculate that
this may be the cause of the discrepancy. Calculating the
statistical rate function we determined the f t value to be
803.04+0.26

−0.23 s. The extracted Gamow-Teller matrix element
of |MGT| = 2.1645(43) agrees within a few percent with
ab initio calculations using the weak axial coupling constant
gA measured in free neutron decay. Our precise determina-
tion allows for improved comparisons between theory and
experiment and may allow using 6He in addition to 3H to fix
low-energy constants in the effective-field-theory description
of the electroweak processes.
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