260 research outputs found

    Therapeutic alternatives with CPAP in obstructive sleep apnea

    Get PDF
    Obstructive Sleep Apnea (OSA), characterized by airflow cessation (apnea) or reduction (hypopnea) due to repeated pharyngeal obstructions during sleep, causes frequent disruption of sleep and hypoxic events. The condition is linked to many adverse health related consequences, such as neurocognitive and cardiovascular disorders, and metabolic syndrome. OSA is a chronic condition requiring long-term treatment, so treatment using continuous positive airway pressure (CPAP) has become the gold standard in cases of moderate or severe OSA. However, its effectiveness is influenced by patients’ adherence. Surgery for OSA or treatment with oral appliances can be successful in selected patients, but for the majority, lifestyle changes such as exercise and dietary control may prove useful. However, exercise training remains under-utilized by many clinicians as an alternative treatment for OSA. Other interventions such as oral appliance (OA), upper way stimulation, and oropharyngeal exercises are used in OSA. Because the benefit of all these techniques is heterogeneous, the major challenge is to associate specific OSA therapies with the maximum efficacy and the best patient compliance

    Therapeutic alternatives with CPAP in obstructive sleep apnea

    Get PDF
    Obstructive Sleep Apnea (OSA), characterized by airflow cessation (apnea) or reduction (hypopnea) due to repeated pharyngeal obstructions during sleep, causes frequent disruption of sleep and hypoxic events. The condition is linked to many adverse health related consequences, such as neurocognitive and cardiovascular disorders, and metabolic syndrome. OSA is a chronic condition requiring long-term treatment, so treatment using continuous positive airway pressure (CPAP) has become the gold standard in cases of moderate or severe OSA. However, its effectiveness is influenced by patients’ adherence. Surgery for OSA or treatment with oral appliances can be successful in selected patients, but for the majority, lifestyle changes such as exercise and dietary control may prove useful. However, exercise training remains under-utilized by many clinicians as an alternative treatment for OSA. Other interventions such as oral appliance (OA), upper way stimulation, and oropharyngeal exercises are used in OSA. Because the benefit of all these techniques is heterogeneous, the major challenge is to associate specific OSA therapies with the maximum efficacy and the best patient compliance

    The challenges of the expanded availability of genomic information: an agenda-setting paper

    Get PDF
    Rapid advances in microarray and sequencing technologies are making genotyping and genome sequencing more affordable and readily available. There is an expectation that genomic sequencing technologies improve personalized diagnosis and personalized drug therapy. Concurrently, provision of direct-to-consumer genetic testing by commercial providers has enabled individuals’ direct access to their genomic data. The expanded availability of genomic data is perceived as influencing the relationship between the various parties involved including healthcare professionals, researchers, patients, individuals, families, industry, and government. This results in a need to revisit their roles and responsibilities. In a 1-day agenda-setting meeting organized by the COST Action IS1303 “Citizen’s Health through public-private Initiatives: Public health, Market and Ethical perspectives,” participants discussed the main challenges associated with the expanded availability of genomic information, with a specific focus on public-private partnerships, and provided an outline from which to discuss in detail the identified challenges. This paper summarizes the points raised at this meeting in five main parts and highlights the key cross-cutting themes. In light of the increasing availability of genomic information, it is expected that this paper will provide timely direction for future research and policy making in this area.Funding Deborah Mascalzoni is supported under Grant Agreement number 305444. Álvaro Mendes is supported by the FCT—The Portuguese Foundation for Science and Technology under postdoctoral grant SFRH/BPD/88647/2012. Isabelle Budin-Ljøsne receives support from the National Research and Innovation Platform for Personalized Cancer Medicine funded by The Research Council of Norway (NFR BIOTEK2021/ES495029) and Biobank Norway funded by The Research Council of Norway—grant number 245464. Heidi Carmen Howard is partly supported by supported by the Swedish Foundation for Humanities and Social Science under grant M13-0260:1), the Biobanking and Molecular Resource Infrastructure of Sweden (BBMRI.se) and the BBMRI-ERIC. Brígida Riso is supported by the Portuguese Foundation for Science and Technology (FCT) under the PhD grant SFRH/BD/100779/2014. Heidi Beate Bentzen receives support from the project Legal Regulation of Information Processing relating to Personalized Cancer Medicine funded by The Research Council of Norway BIOTEK2021/238999

    Brexit and biobanking: GDPR perspectives

    Get PDF
    At the time we wrote this chapter, we undertook the almost impossible task of providing a legal analysis of an event (Brexit) that had not happened and might never have happened. This chapter nonetheless contributes to the edited collection in that it reports on the then legal position in the UK, and presents an analysis of two possible immediate post-Brexit legal futures, for data protection law as applicable to biobanking in the UK. These post-Brexit futures are the position if the draft Withdrawal Agreement is ratified and comes into force, and the position if it does not (a so-called ‘No Deal’ Brexit). The chapter concludes with some thoughts on possible longer term futures. The main message is the deep uncertainties surrounding Brexit and what it means in both legal form and in practice

    The origin of large molecules in primordial autocatalytic reaction networks

    Get PDF
    Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set', being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs', a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio

    Should the teaching of biological evolution include the origin of life?

    Get PDF
    The development of mainstream research on the origin of life as an outcome of Darwinian evolution is discussed. It is argued that prebiotic evolution and the origin of life should not be excluded from the syllabus and should be part of classes on biological evolution, and that the transition from non-living to living matter is best understood when seen as part of evolutionary biology. The wide acceptance of evolutionary approaches to the study of the emergence of life in European and Latin American countries is discussed
    corecore