4,203 research outputs found

    Gene expression profiles of beta-adrenergic receptors in canine vascular tumors : a preliminary study

    Get PDF
    Beta adrenergic receptors (β-AR) play a key role in regulating several hallmark pathways of both benign and malignant human and canine tumors. There is scarce information on the expression of β-AR in canine vascular tumors. Therefore, the purpose of the present research work was to study the mRNA expression levels of the three subtypes of the β-AR genes (ADRB1, ADRB2, ADRB3) in hemangiosarcoma (HSA) and hemangioma (HA), as well as in vascular hamartomas (VH) from dogs.Fifty samples (n = 50) were obtained from 38 dogs. Twenty-three animals had HSA, eight animals HA and seven animals VH. HSA were auricular (n = 8), splenic (n = 5), cutaneous (n = 6), auricular and splenic (n = 2), cutaneous-muscular (n = 1) and disseminated (n = 1). There were seven cases of HSA that were divided into primary tumor and secondary (metastatic) tumor. Skin and muscle samples with a normal histological study were used as control group. ADRB gene expression was determinate in all samples by real-time quantitative PCR. Results showed that ADRB1, ADRB2 and ADRB3 were overexpressed in HSA when compared to the control group. ADRB2 was overexpressed in HA when compared to the control group. HSA express higher values of ADBR1 (p = 0.0178) compared to VH. There was a high inter-individual variability in the expression of the three subtypes of ADBR. No statistically significant difference in the expression of ADBR genes were observed between HSA primary when compared to metastatic or in different anatomical locations. In conclusion, canine HSA overexpress the three β-AR subtypes and canine HA β2-AR. High variability was observed in β-AR mRNA levels amongst HSA cases

    Looking the void in the eyes - the kSZ effect in LTB models

    Get PDF
    As an alternative explanation of the dimming of distant supernovae it has recently been advocated that we live in a special place in the Universe near the centre of a large void described by a Lemaitre-Tolman-Bondi (LTB) metric. The Universe is no longer homogeneous and isotropic and the apparent late time acceleration is actually a consequence of spatial gradients in the metric. If we did not live close to the centre of the void, we would have observed a Cosmic Microwave Background (CMB) dipole much larger than that allowed by observations. Hence, until now it has been argued, for the model to be consistent with observations, that by coincidence we happen to live very close to the centre of the void or we are moving towards it. However, even if we are at the centre of the void, we can observe distant galaxy clusters, which are off-centre. In their frame of reference there should be a large CMB dipole, which manifests itself observationally for us as a kinematic Sunyaev-Zeldovich (kSZ) effect. kSZ observations give far stronger constraints on the LTB model compared to other observational probes such as Type Ia Supernovae, the CMB, and baryon acoustic oscillations. We show that current observations of only 9 clusters with large error bars already rule out LTB models with void sizes greater than approximately 1.5 Gpc and a significant underdensity, and that near future kSZ surveys like the Atacama Cosmology Telescope, South Pole Telescope, APEX telescope, or the Planck satellite will be able to strongly rule out or confirm LTB models with giga parsec sized voids. On the other hand, if the LTB model is confirmed by observations, a kSZ survey gives a unique possibility of directly reconstructing the expansion rate and underdensity profile of the void.Comment: 20 pages, 9 figures, submitted to JCA

    Revealing the mid-infrared emission structure of IRAS 16594-4656 and IRAS 07027-7934

    Full text link
    TIMMI2 diffraction-limited mid-infrared images of a multipolar proto-planetary nebula IRAS 16594-4656 and a young [WC] elliptical planetary nebula IRAS 07027-7934 are presented. Their dust shells are for the first time resolved (only marginally in the case of IRAS 07027-7934) by applying the Lucy-Richardson deconvolution algorithm to the data, taken under exceptionally good seeing conditions (<0.5"). IRAS 16594-4656 exhibits a two-peaked morphology at 8.6, 11.5 and 11.7 microns which is mainly attributed to emission from PAHs. Our observations suggest that the central star is surrounded by a toroidal structure observed edge-on with a radius of 0.4" (~640 AU at an assumed distance of 1.6 kpc) with its polar axis at P.A.~80 degrees, coincident with the orientation defined by only one of the bipolar outflows identified in the HST optical images. We suggest that the material expelled from the central source is currently being collimated in this direction and that the multiple outflow formation has not been coeval. IRAS 07027-7934 shows a bright, marginally extended emission (FWHM=0.3") in the mid-infrared with a slightly elongated shape along the N-S direction, consistent with the morphology detected by HST in the near-infrared. The mid-infrared emission is interpreted as the result of the combined contribution of small, highly ionized PAHs and relatively hot dust continuum. We propose that IRAS 07027-7934 may have recently experienced a thermal pulse (likely at the end of the AGB) which has produced a radical change in the chemistry of its central star.Comment: 35 pages, 8 figures (figures 1, 2, 4 and 6 are in low resolution) accepted for publication in Ap

    Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii

    Get PDF
    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T delbrueckii PYCC 532 1, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields, fermentation and respiration rates, hydrolase activities and sugar uptake rates were used to infer the potential applied relevance of this yeast in comparison to a conventional baker's strain of Saccharomyces cerevisiae. The results showed that both maltase and maltose transport in T delbrueckii were subject to glucose repression and maltose induction, whereas invertase was subject to glucose control but not dependent on sucrose induction. A comparative analysis of specific sugar consumption rates and transport capacities suggests that the transport step limits both glucose and maltose metabolism. Specific rates of CO2 production and O-2 consumption showed a significantly higher contribution of respiration to the overall metabolism in T delbrueckii than in S. cerevisiae. This was reflected in the biomass yields from batch cultures and could represent an asset for the large-scale production of the former species. This work contributes to a better understanding of the physiology of a non-conventional yeast species, with a view to the full exploitation of T delbrueckii by the baking industry.This work was partially funded by Agência de Inovação (AdI) program POCI2010/2.3, project ‘PARFERM’. C. A.-A. and A. P. were supported by PhD fellowships from PRAXIS XXI – BD/21543/99 and BD/13282/ 2003, respectively (Fundação para a Ciência e para a Tecnologia, Portugal).info:eu-repo/semantics/publishedVersio

    Studies of correlations between D and Dˉ{\bar D} mesons in high energy photoproduction

    Get PDF
    Studies of DDˉD{\bar D} correlations for a large sample of events containing fully and partially reconstructed pairs of charmed DD mesons recorded by the Fermilab photoproduction experiment FOCUS (FNAL-E831) are presented. Correlations between DD and Dˉ{\bar D} mesons are used to study heavy quark production dynamics. We present results for fully and partially reconstructed charm pairs and comparisons to a recent version of \textsc{Pythia} with default parameter settings. We also comment on the production of ψ(3770)\psi(3770) in our data.Comment: 14 pages, 4 figure

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore