48 research outputs found

    Active Vibration Isolation of Multi-Degree-of-Freedom Systems

    Full text link
    One of the principal objectives of vibration isolation technology is to isolate sensitive equipment from a vibrating structure or to isolate the structure from an uncertain exogenous disturbance source. In this paper, a dynamic observer-based active isolator is proposed that guarantees closed-loop asymptotic stabil ity and disturbance decoupling between the vibrating structure and isolated structure. The proposed active isolator is applied to a uniaxial vibrational system and compared to an optimal linear-quadratic design.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69073/2/10.1177_107754639900500405.pd

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    In vitro comparison of cryopreserved and liquid platelets: Potential clinical implications

    No full text
    Background Platelet (PLT) concentrates can be cryopreserved in dimethyl sulfoxide (DMSO) and stored at -80C for 2 years. These storage conditions improve availability in both rural and military environments. Previous phenotypic and in vitro studies of cryopreserved PLTs are limited by comparison to fresh liquid-stored PLTs, rather than PLTs stored over their clinically relevant shelf life. Further, nothing is known of the effect of reconstituting cryopreserved PLTs in plasma stored at a variety of clinically relevant temperatures. Study Design and Methods Apheresis PLTs were either stored at room temperature for 5 days or cryopreserved at -80C with 5% DMSO. Cryopreserved PLTs were thawed at 37C and reconstituted in plasma (stored at different temperatures) and compared to fresh and expired liquid-stored PLTs. In vitro assays were performed to assess glycoprotein expression, PLT activity, microparticle content, and function. Results Compared to liquid PLTs over storage, cryopreserved PLTs had reduced expression of the key glycoprotein receptors GPIbα and GPIIb. However, the proportion of PLTs expressing activation markers CD62P and CD63 was similar between cryopreserved and liquid-stored PLTs at expiry. Cryopreserved PLT components contained significantly higher numbers of phosphatidylserine- and tissue factor-positive microparticles than liquid-stored PLTs, and these microparticles reduced the time to clot formation and increased thrombin generation. Conclusion There are distinct differences between cryopreserved and liquid-stored PLTs. Cryopreserved PLTs also have an enhanced hemostatic activity. Knowledge of these in vitro differences will be essential to understanding the outcomes of a clinical trial comparing cryopreserved PLTs and liquid PLTs stored for various durations

    Almost-balanced structural dynamics

    No full text

    Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    No full text
    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared
    corecore