62 research outputs found

    Pulmonary function testing in HTLV-I and HTLV-II infected humans: a cohort study

    Get PDF
    BACKGROUND: HTLV-I infection has been linked to lung pathology and HTLV-II has been associated with an increased incidence of pneumonia and acute bronchitis. However it is unknown whether HTLV-I or -II infection alters pulmonary function. METHODS: We performed pulmonary function testing on HTLV-I, HTLV-II and HTLV seronegative subjects from the HTLV outcomes study (HOST), including vital capacity (VC), forced expiratory volume in one second (FEV(1)), and diffusing lung capacity for carbon monoxide (DLCO) corrected for hemoglobin and lung volume. Multivariable analysis adjusted for differences in age, gender, race/ethnicity, height and smoking history. RESULTS: Mean (standard deviation) pulmonary function values among the 257 subjects were as follows: FVC = 3.74 (0.89) L, FEV(1 )= 2.93 (0.67) L, DLCO(corr )= 23.82 (5.89) ml/min/mmHg, alveolar ventilation (VA) = 5.25 (1.20) L and DLCO(corr)/VA = 4.54 (0.87) ml/min/mmHg/L. There were no differences in FVC, FEV1 and DLCO(corr)/VA by HTLV status. For DLCO(corr), HTLV-I and HTLV-II subjects had slightly lower values than seronegatives, but neither difference was statistically significant after adjustment for confounding. CONCLUSIONS: There was no difference in measured pulmonary function and diffusing capacity in generally healthy HTLV-I and HTLV-II subjects compared to seronegatives. These results suggest that previously described HTLV-associated abnormalities in bronchoalveolar cells and fluid may not affect pulmonary function

    GEMINI 3D spectroscopy of BAL+IR+Fe II QSOs: II. IRAS 04505-2958 an explosive QSO with hypershell and a new scenario for galaxy formation and galaxy end

    Full text link
    From a study of BAL + IR + Fe II QSOs (using deep Gemini GMOS-IFU spectroscopy) new results are presented: for IRAS 04505-2958. Specifically, we have studied in detail the out flow (OF) process and their associated structures, mainly at two large galactic scales: (i) two blobs/shells (S1, S2) at radius r = 1.1 and 2.2 kpc; and (ii) an external hypergiant shell (S3) at r = 11 kpc. In addition, the presence of two very extended hypergiant shells (S4, S5) at r = 80 kpc is discussed. From this GMOS study the following main results were obtained: (i) For the external hypergiant shell S3 the kinematics GMOS maps of the ionized gas show very similar features to those observed for the prototype of exploding external supergiant shell: in NGC 5514. (ii) The main knots K1, K2 and K3 -of this hypergiant shell S3- show a stellar population and emission line ratios associated with the presence of a starburst + OF/shocks. (iii) The internal shells S1 and S2 show structures, OF components and properties very similar to those detected in the nuclear shells of Mrk 231. (iv) The shells S1+S2 and S3 are aligned at PA = 131: i.e. suggesting that the OF process is in the blow-out phase with bipolar structure. In addition, the shells S4 and S5 (at 80-100 kpc scale) are aligned at PA = 40, i.e.: a bipolar OF perpendicular to the internal OF. Finally, the generation of UHE cosmic rays and neutrino/ dark-matter -associated with HyNe in BAL + IR + Fe II QSOs- is discussed.Comment: Submitted MNRAS, 81 pages, 25 Figure

    NLS1 galaxies and estimation of their central black hole masses from the X-ray excess variance method

    Full text link
    Black hole mass determination in active galaxies is a key issue in understanding various luminosity states. In the present paper we try to generalise the mass determination method based on the X-ray excess variance, successfully used for typical broad line Seyfert 1 galaxies (BLS1) to Narrow Line Seyfert 1 (NLS1) galaxies. NLS1 galaxies differ from BLS1 with respect to several properties. They are generally more variable in 2-10 keV energy band so the natural expectation is the need to use a different scaling coefficient between the mass and the variance in these two types of sources. However, we find that such a simple approach is not enough. Although for majority of the 21 NLS1 galaxies in our sample a single scaling coefficient (larger by a factor 20) provided us with a satisfactory method of mass determination, in a small subset of NLS1 galaxies this approach failed. Variability of those objects appeared to be at the intermediate level between NLS1 and BLS1 galaxies. These exceptional NLS1 galaxies have much harder soft X-ray spectra than majority of NLS1 galaxies. We thus postulate that the division of Seyfert 1 galaxies into BLS1 and NLS1 according to the widths of the Hbeta line is less generic than according to the soft X-ray slope.Comment: print in MNRAS, 12 pages, 8 figures, 6 tables; final version -> minor language mistakes are corrected, added 1 sentence and 2 references Mathur & Grupe (2005a,b

    Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview

    Get PDF
    The Brinell, Vickers, Meyer, Rockwell, Shore, IHRD, Knoop, Buchholz, and nanoindentation methods used to measure the indentation hardness of materials at different scales are compared, and main issues and misconceptions in the understanding of these methods are comprehensively reviewed and discussed. Basic equations and parameters employed to calculate hardness are clearly explained, and the different international standards for each method are summarized. The limits for each scale are explored, and the different forms to calculate hardness in each method are compared and established. The influence of elasticity and plasticity of the material in each measurement method is reviewed, and the impact of the surface deformation around the indenter on hardness values is examined. The difficulties for practical conversions of hardness values measured by different methods are explained. Finally, main issues in the hardness interpretation at different scales are carefully discussed, like the influence of grain size in polycrystalline materials, indentation size effects at micro-and nanoscale, and the effect of the substrate when calculating thin films hardness. The paper improves the understanding of what hardness means and what hardness measurements imply at different scales.Funding Agencies|Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University ((Faculty Grant SFO Mat LiU) [2009 00971]</p

    Marine Biodiversity of Aotearoa New Zealand

    Get PDF
    The marine-biodiversity assessment of New Zealand (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km2, is one of the largest in the world. It spans 30° of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New Zealand hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New Zealand's entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New Zealand EEZ. The implication is that, when all other New Zealand phyla are equally well studied, total marine diversity in the EEZ may be expected to equal that in the ERMS region. This equivalence invites testable hypotheses to explain it. There are 177 naturalized alien species in New Zealand coastal waters, mostly in ports and harbours. Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War. Nevertheless, collections are well supported by funding and are continually added to. Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research
    • 

    corecore