42 research outputs found

    Evaluating Pollination Deficits in Pumpkin Production in New York

    Get PDF
    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yiel

    Extended Sentinel Monitoring of Helicoverpa zea Resistance to Cry and Vip3Aa Toxins in Bt Sweet Corn: Assessing Changes in Phenotypic and Allele Frequencies of Resistance

    Get PDF
    Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020–2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer.

    Get PDF
    INTRODUCTION: Tumors that express estrogen receptor alpha (ERα+) comprise 75% of breast cancers in women. While treatments directed against this receptor have successfully lowered mortality rates, many primary tumors initially or later exhibit resistance. The paucity of murine models of this luminal tumor subtype has hindered studies of factors that promote their pathogenesis and modulate responsiveness to estrogen-directed therapeutics. Since epidemiologic studies closely link prolactin and the development of ERα+ tumors in women, we examined characteristics of the aggressive ERα+ and ERα- carcinomas which develop in response to mammary prolactin in a murine transgenic model (neu-related lipocalin- prolactin (NRL-PRL)). To evaluate their relationship to clinical tumors, we determined phenotypic relationships among these carcinomas, other murine models of breast cancer, and features of luminal tumors in women. METHODS: We examined a panel of prolactin-induced tumors for characteristics relevant to clinical tumors: histotype, ERα/progesterone receptor (PR) expression and estrogen responsiveness, Activating Protein 1 (AP-1) components, and phosphorylation of signal transducer and activator of transcription 5 (Stat5), extracellular signal regulated kinase (ERK) 1/2 and AKT. We compared levels of transcripts in the ERα-associated luminal signature that defines this subtype of tumors in women and transcripts enriched in various mammary epithelial lineages to other well-studied genetically modified murine models of breast cancer. Finally, we used microarray analyses to compare prolactin-induced ERα+ and ERα- tumors, and examined responsiveness to estrogen and the anti-estrogen, Faslodex, in vivo. RESULTS: Prolactin-induced carcinomas were markedly diverse with respect to histotype, ERα/PR expression, and activated signaling cascades. They constituted a heterogeneous, but distinct group of murine mammary tumors, with molecular features of the luminal subtype of human breast cancer. In contrast to morphologically normal and hyperplastic structures in NRL-PRL females, carcinomas were insensitive to ERα-mediated signals. These tumors were distinct from mouse mammary tumor virus (MMTV)-neu tumors, and contained elevated transcripts for factors associated with luminal/alveolar expansion and differentiation, suggesting that they arose from physiologic targets of prolactin. These features were shared by ERα+ and ERα- tumors, suggesting a common origin, although the former exhibited transcript profiles reflecting greater differentiation. CONCLUSIONS: Our studies demonstrate that prolactin can promote diverse carcinomas in mice, many of which resemble luminal breast cancers, providing a novel experimental model to examine the pathogenesis, progression and treatment responsiveness of this tumor subtype

    Pest population dynamics are related to a continental overwintering gradient

    Get PDF
    Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Evaluating an Action Threshold-Based Insecticide Program on Onion Cultivars Varying in Resistance to Onion Thrips (Thysanoptera: Thripidae)

    No full text
    Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is a highly destructive pest of onion, Allium cepa L., and its management relies on multiple applications of foliar insecticides. Development of insecticide resistance is common in T. tabaci populations, and new strategies are needed to relax existing levels of insecticide use, but still provide protection against T. tabaci without compromising marketable onion yield. An action threshold-based insecticide program combined with or without a thrips-resistant onion cultivar was investigated as an improved approach for managing T. tabaci infestations in commercial onion fields. Regardless of cultivar type, the average number of insecticide applications needed to manage T. tabaci infestations in the action-threshold based program was 4.3, while the average number of sprays in the standard weekly program was 7.2 (a 40% reduction). The mean percent reduction in numbers of applications following the action threshold treatment in the thrips-resistant onion cultivar, ‘Advantage', was 46.7% (range 40-50%) compared with the standard program, whereas the percentage reduction in applications in action threshold treatments in the thrips-susceptible onion cultivar, ‘Santana', was 34.3% (range 13-50%) compared with the standard program, suggesting a benefit of the thrips-resistant cultivar. Marketable bulb yields for both ‘Advantage' and ‘Santana' in the action threshold-based program were nearly identical to those in the standard program, indicating that commercially acceptable bulb yields will be generated with fewer insecticide sprays following an action threshold-based program, saving money, time and benefiting the environment

    Understanding the potential impact of continued seed treatment use for resistance management in Cry51Aa2.834_16 Bt cotton against Frankliniella fusca.

    No full text
    Transgenic cotton expressing Cry51Aa2.834_16 Bt toxin (hereafter referred to as MON 88702) has the potential to be an important tool for pest management due to its unique activity against tobacco thrips, Frankliniella fusca. Unlike other Bt toxins targeting lepidopteran cotton pests, MON 88702 does not cause direct mortality but has an antixenotic effect that suppresses F. fusca oviposition. Previous work has shown neonicotinoid seed treated (NST) crops have similar behavioral effects on thrips. This study used non-choice and common garden experiments to examine how the presence of MON 88702 cotton and soybean (another F. fusca host) with and without NSTs might alter F. fusca infestation distributions. In a no-choice environment, significant larval establishment differences were observed, with untreated soybean plants becoming most heavily infested. In choice experiments, plants expressing MON 88702 or were neonicotinoid treated had significantly lower larval establishment. Larval density decreased as dispersal distance increased, suggesting reproductive decisions were negatively related to distance from the release point. Understanding how F. fusca responds to MON 88702 in an environment where adults can choose among multiple host plants will provide valuable context for projections regarding design of MON 88702 resistance refuges. Reduced larval establishment on NST cotton and soybean suggests that area-wide use of NSTs could reduce the number of susceptible F. fusca generated in unstructured crop refuges for MON 88702. These results also suggest that although the presence of NST MON 88702 could suppress reproduction and resistance selection, over time this benefit could erode resulting in increased larval establishment on NST cotton and soybean due to increased frequency of neonicotinoid resistant F. fusca populations

    Estimating E-Race European Corn Borer (Lepidoptera: Crambidae) Adult Activity in Snap Bean Fields Based on Corn Planting Intensity and Their Activity in Corn in New York Agroecosystems

    No full text
    European corn borer, Ostrinia nubilalis (Hübner), is a major pest of processing snap bean because larvae are contaminants in pods. The incidence of O. nubilalis-contaminated beans has become uncommon in New York, possibly because widespread adoption of Bt field corn has suppressed populations. Snap bean fields located where Bt corn has been intensively grown in space and time may be at lower risk for O. nubilalis than fields located where Bt corn is not common. To manage O. nubilalis infestation risk, growers determine insecticide application frequency in snap bean based on pheromone-trapping information in nearby sweet corn fields; adult activity is presumed equivalent in both crops. Our goal was to determine if corn planting intensity and adult activity in sweet corn could be used to estimate O. nubilalis populations in snap bean in New York in 2014-2015. Numbers of O nubilalis adults captured in pheromone-baited traps located in snap bean fields where corn was and was not intensively grown were similar, suggesting that O. nubilalis does not respond to local levels of Bt corn in the landscape. Numbers of Ostrinia nubilalis captured in pheromone-baited traps placed by snap bean fields and proximal sweet corn fields were not related, indicating that snap bean growers should no longer make control decisions based on adult activity in sweet corn. Our results also suggest that the risk of O. nubilalis infestations in snap bean is low (∼80% of the traps caught zero moths) and insecticide applications targeting this pest should be reduced or eliminated
    corecore