559 research outputs found

    Inferring adaptive codon preference to understand sources of selection shaping codon usage bias.

    Get PDF
    Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify “adaptive codon preference,” a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated “preference” largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome

    Impact of translational error-induced and error-free misfolding on the rate of protein evolution

    Get PDF
    Theoretical calculations suggest that, in addition to translational error-induced protein misfolding, a non-negligible fraction of misfolded proteins are error free.We propose that the anticorrelation between the expression level of a protein and its rate of sequence evolution be explained by an overarching protein-misfolding-avoidance hypothesis that includes selection against both error-induced and error-free protein misfolding, and verify this model by a molecular-level evolutionary simulation.We provide strong empirical evidence for the protein-misfolding-avoidance hypothesis, including a positive correlation between protein expression level and stability, enrichment of misfolding-minimizing codons and amino acids in highly expressed genes, and stronger evolutionary conservation of residues in which nonsynonymous changes are more likely to increase protein misfolding

    Empirical Evidence for Son-Killing X Chromosomes and the Operation of SA-Zygotic Drive

    Get PDF
    Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them.Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons.Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring

    Fluctuation scaling in complex systems: Taylor's law and beyond

    Full text link
    Complex systems consist of many interacting elements which participate in some dynamical process. The activity of various elements is often different and the fluctuation in the activity of an element grows monotonically with the average activity. This relationship is often of the form "fluctuations≈const.×averageαfluctuations \approx const.\times average^\alpha", where the exponent α\alpha is predominantly in the range [1/2,1][1/2, 1]. This power law has been observed in a very wide range of disciplines, ranging from population dynamics through the Internet to the stock market and it is often treated under the names \emph{Taylor's law} or \emph{fluctuation scaling}. This review attempts to show how general the above scaling relationship is by surveying the literature, as well as by reporting some new empirical data and model calculations. We also show some basic principles that can underlie the generality of the phenomenon. This is followed by a mean-field framework based on sums of random variables. In this context the emergence of fluctuation scaling is equivalent to some corresponding limit theorems. In certain physical systems fluctuation scaling can be related to finite size scaling.Comment: 33 pages, 20 figures, 2 tables, submitted to Advances in Physic

    High Intensity Interval Training (HIIT) as a Potential Countermeasure for Phenotypic Characteristics of Sarcopenia: A Scoping Review

    Get PDF
    Background: Sarcopenia is defined as a progressive and generalized loss of skeletal muscle quantity and function associated predominantly with aging. Physical activity appears the most promising intervention to attenuate sarcopenia, yet physical activity guidelines are rarely met. In recent years high intensity interval training (HIIT) has garnered interested in athletic populations, clinical populations, and general population alike. There is emerging evidence of the efficacy of HIIT in the young old (i.e. seventh decade of life), yet data concerning the oldest old (i.e., ninth decade of life onwards), and those diagnosed with sarcopenic are sparse. Objectives: In this scoping review of the literature, we aggregated information regarding HIIT as a potential intervention to attenuate phenotypic characteristics of sarcopenia. Eligibility Criteria: Original investigations concerning the impact of HIIT on muscle function, muscle quantity or quality, and physical performance in older individuals (mean age ≄60 years of age) were considered. Sources of Evidence: Five electronic databases (Medline, EMBASE, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials [CENTRAL]) were searched. Methods: A scoping review was conducted using the Arksey and O'Malley methodological framework (2005). Review selection and characterization were performed by two independent reviewers using pretested forms. Results: Authors reviewed 1,063 titles and abstracts for inclusion with 74 selected for full text review. Thirty-two studies were analyzed. Twenty-seven studies had a mean participant age in the 60s, two in the 70s, and three in the 80s. There were 20 studies which examined the effect of HIIT on muscle function, 22 which examined muscle quantity, and 12 which examined physical performance. HIIT was generally effective in Improving muscle function and physical performance compared to non-exercised controls, moderate intensity continuous training, or pre-HIIT (study design-dependent), with more ambiguity concerning muscle quantity. Conclusions: Most studies presented herein utilized outcome measures defined by the European Working Group on Sarcopenia in Older People (EWGSOP). However, there are too few studies investigating any form of HIIT in the oldest old (i.e., ≄80 years of age), or those already sarcopenic. Therefore, more intervention studies are needed in this population

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    Intergenomic Arms Races: Detection of a Nuclear Rescue Gene of Male-Killing in a Ladybird

    Get PDF
    Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae), unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s) a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing Îł-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first reported case of a nuclear suppressor of male-killing in a ladybird. They are considered in regard to sex ratio and intra-genomic conflict theories, and models of the evolutionary dynamics and distribution of inherited symbionts

    Conditional expression explains molecular evolution of social genes in a microbe

    Get PDF
    Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process

    Selection upon Genome Architecture: Conservation of Functional Neighborhoods with Changing Genes

    Get PDF
    An increasing number of evidences show that genes are not distributed randomly across eukaryotic chromosomes, but rather in functional neighborhoods. Nevertheless, the driving force that originated and maintains such neighborhoods is still a matter of controversy. We present the first detailed multispecies cartography of genome regions enriched in genes with related functions and study the evolutionary implications of such clustering. Our results indicate that the chromosomes of higher eukaryotic genomes contain up to 12% of genes arranged in functional neighborhoods, with a high level of gene co-expression, which are consistently distributed in phylogenies. Unexpectedly, neighborhoods with homologous functions are formed by different (non-orthologous) genes in different species. Actually, instead of being conserved, functional neighborhoods present a higher degree of synteny breaks than the genome average. This scenario is compatible with the existence of selective pressures optimizing the coordinated transcription of blocks of functionally related genes. If these neighborhoods were broken by chromosomal rearrangements, selection would favor further rearrangements reconstructing other neighborhoods of similar function. The picture arising from this study is a dynamic genomic landscape with a high level of functional organization

    Taming of the shrewd: novel eukaryotic genes from RNA viruses

    Get PDF
    Genomes of several yeast species contain integrated DNA copies of complete genomes or individual genes of non-retroviral double-strand RNA viruses as reported in a recent BMC Biology article by Taylor and Bruenn. The integrated virus-specific sequences are at least partially expressed and seem to evolve under pressure of purifying selection, indicating that these are functional genes. Together with similar reports on integrated copies of some animal RNA viruses, these results suggest that integration of DNA copies of non-reverse-transcribing RNA viruses might be much more common than previously thought. The integrated copies could contribute to acquired immunity to the respective viruses
    • 

    corecore