33 research outputs found

    Ground and Excited States of Bis‐4‐Methoxybenzyl‐Substituted Diketopyrrolopyrroles: Spectroscopic and Electrochemical Studies

    Get PDF
    A series of symmetrically bis‐4‐methoxybenzyl (4MB) N‐substituted 1,4‐diketopyrrolo[3,4‐c]pyrrole (DPP) derivatives have been synthesized. The 4MB unit makes the DPP core soluble, and shows subtle modification of up to 0.2 eV in ground and excited states of the core when compared with related alkyl derivatives. Absorption and emission spectroscopy, as well as electrochemical and computational methods have been employed to prove the importance of the peripheral aryl units on the donor/ acceptor properties of the molecules. The 4MB products are highly fluorescent (quantum yields approaching 100 % in solution), with a unique distribution of frontier states shown by spectroelectrochemistry. The solid‐state fluorescence correlates with the X‐ray crystal structures of the compounds, a Stokes shift of approximately 80 nm is seen for two of the compounds. The frontier energy levels show that this subtle substitutional change could be of future use in molecular energy level tailoring in these, and related, materials for organic (opto)electronics

    The incursion of Highly Pathogenic Avian Influenza (HPAI) into North Atlantic seabird populations: an interim report from the 15th International Seabird Group conference

    Get PDF
    The H5N1 Highly Pathogenic Avian Influenza (HPAI) outbreak devastated populations of North Atlantic seabirds in the 2022 breeding season. Positive cases of HPAI in seabirds were previously reported in Great Skuas Stercorarius skua colonies in the 2021 breeding season (Banyard et al. 2022). During the 2022 breeding season, major outbreaks were sequentially reported in an increasing number of species and spread generally north to south across the UK and beyond. To date 15 breeding seabird species have tested positive in Scotland and over 20,500 birds have been reported dead (NatureScot, unpublished data). By September 2022, more than 2,600 Great Skuas had died: 13% of the UK population and 8% of the world population (NatureScot, unpublished data), 1,400 on Foula, Shetland alone (Camphuysen & Gear 2022). These figures are derived mostly from colony counts and will be a substantial underestimate of total mortality, not accounting for birds lost at sea or remote locations with limited reporting. In response to this unfolding situation, a workshop was convened in August 2022, at the 15th International Seabird Group Conference in Cork, to bring together the seabird community (researchers, ringers, volunteers, site managers, non-government organisations and policy makers) and infectious disease experts to share knowledge and experiences and recommend positive future actions. This report focusses on three key considerations addressed by the workshop, and will be followed by a full open-access report on the EcoEvoRxiv repository. All six presentations can be viewed online (Gamble et al. 2022). The views expressed here reflect the wider discussion expressed by the seabird community in the workshop that followed the presentations and should not be associated with any individual author

    A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation

    Get PDF
    AbstractThe sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm–egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca2+ signaling and homeostasis modules present in the egg and zygote. The sea urchin “calcium toolkit” as predicted by the genome is described. Emphasis is on the Ca2+ signaling modules operating during egg activation, but the Ca2+ signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca2+ at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca2+ serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies

    Global agricultural intensification during climate change: a role for genomics

    Get PDF
    Agriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change

    Seasonal changes in plankton respiration and bacterial metabolism in a temperate shelf sea

    Get PDF
    The seasonal variability of plankton metabolism indicates how much carbon is cycling within a system, as well as its capacity to store carbon or export organic matter and CO2 to the deep ocean. Seasonal variability between November 2014, April 2015 and July 2015 in plankton respiration and bacterial (Bacteria+Archaea) metabolism is reported for the upper and bottom mixing layers at two stations in the Celtic Sea, UK. Upper mixing layer (UML, >75 m in November, 41 - 70 m in April and ~50 m in July) depth-integrated plankton metabolism showed strong seasonal changes with a maximum in April for plankton respiration (1.2- to 2-fold greater compared to November and July, respectively) and in July for bacterial production (2-fold greater compared to November and April). However UML depth-integrated bacterial respiration was similar in November and April and 2-fold lower in July. The greater variability in bacterial production compared to bacterial respiration drove seasonal changes in bacterial growth efficiencies, which had maximum values of 89 % in July and minimum values of 5 % in November. Rates of respiration and gross primary production (14C-PP) also showed different seasonal patterns, resulting in seasonal changes in 14C-PP:CRO2 ratios. In April, the system was net autotrophic (14C-PP:CRO2 > 1), with a surplus of organic matter available for higher trophic levels and export, while in July balanced metabolism occurred (14C-PP:CRO2 = 1) due to an increase in plankton respiration and a decrease in gross primary production. Comparison of the UML and bottom mixing layer indicated that plankton respiration and bacterial production were higher (between 4 and 8-fold and 4 and 7-fold, respectively) in the UML than below. However, the rates of bacterial respiration were not statistically different (p > 0.05) between the two mixing layers in any of the three sampled seasons. These results highlight that, contrary to previous data from shelf seas, the production of CO2 by the plankton community in the UML, which is then available to degas to the atmosphere, is greater than the respiratory production of dissolved inorganic carbon in deeper waters, which may contribute to offshore export

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
    corecore