353 research outputs found

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (secθ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 8080^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×1051.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×1032.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Clinical decision-making: midwifery students' recognition of, and response to, post partum haemorrhage in the simulation environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper reports the findings of a study of how midwifery students responded to a simulated post partum haemorrhage (PPH). Internationally, 25% of maternal deaths are attributed to severe haemorrhage. Although this figure is far higher in developing countries, the risk to maternal wellbeing and child health problem means that all midwives need to remain vigilant and respond appropriately to early signs of maternal deterioration.</p> <p>Methods</p> <p>Simulation using a patient actress enabled the research team to investigate the way in which 35 midwifery students made decisions in a dynamic high fidelity PPH scenario. The actress wore a birthing suit that simulated blood loss and a flaccid uterus on palpation. The scenario provided low levels of uncertainty and high levels of relevant information. The student's response to the scenario was videoed. Immediately after, they were invited to review the video, reflect on their performance and give a commentary as to what affected their decisions. The data were analysed using Dimensional Analysis.</p> <p>Results</p> <p>The students' clinical management of the situation varied considerably. Students struggled to prioritise their actions where more than one response was required to a clinical cue and did not necessarily use mnemonics as heuristic devices to guide their actions. Driven by a response to single cues they also showed a reluctance to formulate a diagnosis based on inductive and deductive reasoning cycles. This meant they did not necessarily introduce new hypothetical ideas against which they might refute or confirm a diagnosis and thereby eliminate fixation error.</p> <p>Conclusions</p> <p>The students response demonstrated that a number of clinical skills require updating on a regular basis including: fundal massage technique, the use of emergency standing order drugs, communication and delegation of tasks to others in an emergency and working independently until help arrives. Heuristic devices helped the students to evaluate their interventions to illuminate what else could be done whilst they awaited the emergency team. They did not necessarily serve to prompt the students' or help them plan care prospectively. The limitations of the study are critically explored along with the pedagogic implications for initial training and continuing professional development.</p

    The amount of preoperative endometrial tissue surface in relation to final endometrial cancer classification

    Get PDF
    OBJECTIVETo evaluate whether the amount of preoperative endometrial tissue surface is related to the degree of concordance with final low- and high-grade endometrial cancer (EC). In addition, to determine whether discordance is influenced by sampling method and impacts outcome.METHODSA retrospective cohort study within the European Network for Individualized Treatment of Endometrial Cancer (ENITEC). Surface of preoperative endometrial tissue samples was digitally calculated using ImageJ. Tumor samples were classified into low-grade (grade 1-2 endometrioid EC (EEC)) and high-grade (grade 3 EEC + non-endometroid EC).RESULTSThe study cohort included 573 tumor samples. Overall concordance between pre- and postoperative diagnosis was 60.0%, and 88.8% when classified into low- and high-grade EC. Upgrading (preoperative low-grade, postoperative high-grade EC) was found in 7.8% and downgrading (preoperative high-grade, postoperative low-grade EC) in 26.7%. The median endometrial tissue surface was significantly lower in concordant diagnoses when compared to discordant diagnoses, respectively 18.7 mm2 and 23.5 mm2 (P = 0.022). Sampling method did not influence the concordance in tumor classification. Patients with preoperative high-grade and postoperative low-grade showed significant lower DSS compared to patients with concordant low-grade EC (P = 0.039).CONCLUSIONThe amount of preoperative endometrial tissue surface was inversely related to the degree of concordance with final tumor low- and high-grade. Obtaining higher amount of preoperative endometrial tissue surface does not increase the concordance between pre- and postoperative low- and high-grade diagnosis in EC. Awareness of clinically relevant down- and upgrading is crucial to reduce subsequent over- or undertreatment with impact on outcome.</p
    corecore