2,485 research outputs found

    A new biophysical decompression model for estimating the risk of articular bends during and after decompression

    No full text
    International audienceThe biophysical models that intend to predict the risk of decompression sickness after a change of pressure are not numerous. Few approaches focus in particular on joints as target tissues, with the aim to describe properly the mechanisms inducing pain. Nevertheless, for this type of decompression incidents, called , no model proved to fit the empirical results for a broad range of exposures and decompression procedures. We present here an original biophysical decompression model for describing the occurrence of articular bends. A target joint is broken down into two parts that exchange inert gases with the blood by perfusion and with each other by diffusion over distances of a few millimeters. This diffusion pathway allows the slow amplification of microbubbles growing during and after decompression, consistent with the possible delayed occurrence of bends. The diffusion coefficients introduced into this model are larger than those introduced into most modern decompression models. Their value remains physical (#10m/s). Inert gas exchanges and the formation, amplification and resorption of microbubbles during and after decompression were simulated. We used a critical gas volume criterion for predicting the occurrence of bends. A risk database extracted from COMEX experience and other published studies was used for the correlation of model parameters not known . We considered a large range of exposure, and the commonly used inert gases nitrogen and helium. This correlation phase identified the worst biophysical conformations most likely to lead to the formation, in tissues such as tendons, of a large number of microbubbles recruited from pre-existing gas nuclei during decompression. The risk of bends occurrence was found to be linked to the total separated gas volume generated during and after decompression. A clamping phenomenon occurs soon after the start of decompression, greatly slowing the gas exchanges controlled especially by the oxygen window. This model, which reproduces many empirical findings, may be considered both descriptive and predictive

    Radiative lifetime measurements of rubidium Rydberg states

    Full text link
    We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 < n < 45. To enable long-lived states to be measured, our experiment uses slow-moving Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a less sensitive method, and are also in excellent agreement with theory.Comment: 27 pages,6 figure

    Metaflammasome components in the human brain: a role in dementia with alzheimer's pathology?

    Get PDF
    Epidemiological and genetic studies have identified metabolic disorders and inflammation as risk factors for Alzheimer's disease (AD). Evidence in obesity and type-2 diabetes suggests a role for a metabolic inflammasome (“metaflammasome”) in mediating chronic inflammation in peripheral organs implicating IKKβ (inhibitor of nuclear factor kappa-B kinase subunit beta), IRS1 (insulin receptor substrate 1), JNK (c-jun N-terminal kinase), and PKR (double-stranded RNA protein kinase). We hypothesized that these proteins are expressed in the brain in response to metabolic risk factors in AD. Neocortex from 299 participants from the MRC Cognitive Function and Ageing Studies was analysed by immunohistochemistry for the expression of the phosphorylated (active) form of IKKβ [pSer176/180], IRS1 [pS312], JNK [pThr183/Tyr185] and PKR [pT451]. The data were analyzed to investigate whether the proteins were expressed together and in relation with metabolic disorders, dementia, Alzheimer's pathology and APOE genotype. We observed a change from a positive to a negative association between the proteins and hypertension according to the dementia status. Type-2 diabetes was negatively related with the proteins among participants without dementia; whereas participants with dementia and AD pathology showed a positive association with JNK. A significant association between IKKβ and JNK in participants with dementia and AD pathology was observed, but not in those without dementia. Otherwise, weak to moderate associations were observed among the protein loads. The presence of dementia was significantly associated with JNK and negatively associated with IKKβ and IRS1. Cognitive scores showed a significant positive relationship with IKKβ and a negative with IRS1, JNK and PKR. The proteins were significantly associated with pathology in Alzheimer's participants with the relationship being inverse or not significant in participants without dementia. Expression of the proteins was not related to APOE genotype. These findings highlight a role for these proteins in AD pathophysiology but not necessarily as a complex

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration

    Get PDF
    Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    corecore