84 research outputs found

    Conduit Dynamics in Transitional Rhyolitic Activity Recorded by Tuffisite Vein Textures from the 2008–2009 Chaitén Eruption

    Get PDF
    The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behavior hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3–4 MPa are associated with fragmentation of foam and dense magma at ~200–360 m depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of meters. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which then triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic magma and creates a complex textural collage within dense rhyolitic lava, in which neighboring fused clasts may have experienced vastly different degassing histories

    Integrated Zoning for Aquaculture and Biodiversity using a Spatial Decision-Support Tool

    Get PDF
    Spatial decision-support tools can guide decision-makers towards knowledge-based spatial planning. Their application for multiple-objective zoning is beneficial for supporting the on-going Maritime Spatial Planning (MSP) process, in particular in areas of high density of uses like the Adriatic-Ionian region (AIR). In this work, we give contribution to the sustainable development of the aquaculture, as one of the main maritime activities for sustainable Blue Growth in the AIR. Aquaculture expansion should occur alongside the protection of biodiversity and the conservation of sites where aquaculture and its synergic uses can coexist. Planning for these objectives independently from one another has been shown to produce inefficiencies in costs, area, and conflicts across sectors. The objective of this research is to operationalize multi-objective zoning for aquaculture expansion and biodiversity protection (seabed habitats, marine mammals, seabirds and turtles species distribution, nursery and spawning areas of commercially important fish species). The area of analyses is the coastal area of the Emilia Romagna Region (Italian Northern Adriatic Sea). This area is the main producer of mussels in Italy and it is currently intensively crowded by several maritime uses, which are expected to grow over next years resulting in increase of conflicts and pressures on sensitive environments (Natura 2000 sites; Biological Protection zone). The decision support tool Marxan and its advanced version Marxan with Zones were applied to develop planning scenarios. Firstly, we prioritise biodiversity conservation, through Marxan, while minimizing conflicts with other anthropic uses. Secondly, we carry out an aquaculture suitability analysis using a multicriteria evaluation approach based on environmental, biological and socio-economic conditions. Next, we simultaneously prioritize both aquaculture and biodiversity, through Marxan with Zones, while minimizing impacts on seven other industries operating in the Emilia Romagna Region. We discuss an integrated zoning plan that meets targets for multiple objectives, and which adheres to several constraints regarding the location of aquaculture farms offshore in order to both allow the use of bigger technologies for mussel catch and minimize the impacts on coastal environments (pollution impact, visual impact). Our analysis can guide multiple stakeholders and decision-makers towards cost-efficient solutions that are scientifically based, thus contributing to the marine spatial planning process and sustainable growth in the Adriatic-Ionian region

    From Marxan to management: ocean zoning with stakeholders for Tun Mustapha Park in Sabah, Malaysia

    Get PDF
    Tun Mustapha Park, in Sabah, Malaysia, was gazetted in May 2016 and is the first multiple-use park in Malaysia where conservation, sustainable resource use and development co-occur within one management framework. We applied a systematic conservation planning tool, Marxan with Zones, and stakeholder consultation to design and revise the draft zoning plan. This process was facilitated by Sabah Parks, a government agency, and WWF-Malaysia, under the guidance of the Tun Mustapha Park steering committee and with support from the University of Queensland. Four conservation and fishing zones, including no-take areas, were developed, each with representation and replication targets for key marine habitats, and a range of socio-economic and community objectives. Here we report on how decision-support tools informed the reserve design process in three planning stages: prioritization, government review, and community consultation. Using marine habitat and species representation as a reporting metric, we describe how the zoning plan changed at each stage of the design process. We found that the changes made to the zoning plan by the government and stakeholders resulted in plans that compromised the achievement of conservation targets because no-take areas were moved away from villages and the coastline, where unique habitats are located. The design process highlights a number of lessons learned for future conservation zoning, which we believe will be useful as many other places embark on similar zoning processes on land and in the sea

    An Assessment of the Representation of Ecosystems in Global Protected Areas Using New Maps of World Climate Regions and World Ecosystems

    Get PDF
    Representation of ecosystems in protected area networks and conservation strategies is a core principle of global conservation priority setting approaches and a commitment in Aichi Target 11 of the Convention on Biological Diversity. The 2030 Sustainable Development Goals (SDGs) explicitly call for the conservation of terrestrial, freshwater, and marine ecosystems. Accurate ecosystem distribution maps are required to assess representation of ecosystems in protected areas, but standardized, high spatial resolution, and globally comprehensive ecosystem maps have heretofore been lacking. While macroscale global ecoregions maps have been used in global conservation priority setting exercises, they do not identify distinct localized ecosystems at the occurrence (patch) level, and instead describe large ecologically meaningful areas within which additional conservation planning and management are necessary. We describe a new set of maps of globally consistent climate regions and ecosystems at a much finer spatial resolution (250 m) than existing ecological regionalizations. We then describe a global gap analysis of the representation of these ecosystems in protected areas. The new map of terrestrial World Ecosystems was derived from the objective development and integration of 1) global temperature domains, 2) global moisture domains, 3) global landforms, and 4) 2015 global vegetation and land use. These new terrestrial World Ecosystems do not include either freshwater or marine ecosystems, but analog products for the freshwater and marine domains are in development. A total of 431 World Ecosystems were identified, and of these a total of 278 units were natural or semi-natural vegetation/environment combinations, including different kinds of forestlands, shrublands, grasslands, bare areas, and ice/snow regions. The remaining classes were different kinds of croplands and settlements. Of the 278 natural and semi-natural classes, 9 were not represented in global protected areas with a strict biodiversity conservation management objective (IUCN management categories I-IV), and an additional 206 were less than 8.5% protected (half way to the 17% Aichi Target 11 goal). Forty four classes were between 8.5% and 17% protected (more than half way towards the Aichi 17% target), and only 19 classes exceeded the 17% Aichi target. However, when all protected areas (IUCN management categories I-VI plus protected areas with no IUCN designation) were included in a separate global gap analysis, representation of ecosystems increases substantially, with a third of the ecosystems exceeding the 17% Aichi target, and another third between 8.5% and 17%. The overall protection (representation) of global ecosystems in protected areas is considerably less when assessed using only strictly conserved protected areas, and more if all protected areas are included in the analysis. Protected area effectiveness should be included in further evaluations of global ecosystem protection. The ecosystems with the highest representation in protected areas were often bare or sparsely vegetated and found in inhospitable environments (e.g. cold mountains, deserts), and the eight most protected ecosystems were all snow and ice ecosystems. In addition to the global gap analysis of World Ecosystems in protected areas, we report on the representation results for the ecosystems in each biogeographic realm (Neotropical, Nearctic, Afrotropical, Palearctic, Indomalayan, Australasian, and Oceania)

    Addressing transboundary conservation challenges through marine spatial prioritization

    Get PDF
    The Adriatic and Ionian Region (AIR) is an important area for both strategic maritime development and biodiversity conservation in the European Union (EU). However, given that both EU and non‐EU countries border the sea, multiple legal and regulatory frameworks operate at different scales which can hinder the coordinated long‐term sustainable development of the region. Transboundary marine (or maritime) spatial planning can help overcome these challenges by building consensus on planning objectives and making the trade‐offs between biodiversity conservation and its influence on economically important sectors more explicit. We approach this challenge by developing and testing four spatial prioritization strategies, using the decision‐support tool Marxan, which meets targets for biodiversity conservation whilst minimizing impacts to users. We evaluate these strategies in terms of how priority areas shift under different scales of target‐setting (e.g. regional versus country‐level). We also examine the trade‐off between cost‐efficiency and how equally solutions represent countries and maritime industries (N = 14) operating in the region using the Protection Equality metric. We show that there are negligible differences in where priority conservation areas are located when we set targets for biodiversity at the regional versus country scale. Conversely, the prospective impacts on industries, when considered as costs to be minimized, are highly divergent across scenarios and bias the placement of protection towards industries located in isolation or with few other industries. We conclude by making several recommendations to underpin future MSP efforts in the region, including the identification of: 1) areas of national significance, 2) transboundary areas requiring cooperation between countries, and 3) areas where impacts on maritime industries require careful consideration of the trade‐off between biodiversity conservation and socio‐economic objectives

    Standardized reporting of the costs of management interventions for biodiversity conservation

    Get PDF
    Effective conservation management interventions must combat threats and deliver conservation benefits at costs that can be achieved within limited budgets. Considerable effort has focused on measuring the potential benefits of conservation interventions but explicit quantification of implementation costs has been rare. Even when costs have been quantified, haphazard and inconsistent reporting means that published values are difficult to interpret. This reporting deficiency hinders progress towards building a collective understanding of the costs of management interventions across projects, and thus limits our ability to identify efficient solutions to conservation problems or attract adequate funding. We address this challenge by proposing a standardized approach to describing costs reported for conservation interventions. These standards call for researchers and practitioners to ensure the cost data they collect and report on provide enough contextual information that readers and future users can interpret the data appropriately. We suggest these standards be adopted by major conservation organizations, conservation science institutions, and journals, so that cost reporting is comparable between studies. This would support shared learning and enhance our ability to identify and perform cost-effective conservation.Funding was provided by CEED (GDI and workshop), an ARC Laureate Fellowship (HPP, BM, VA and JM), Arcadia (WJS), the Natural Environment Research Council (LVD, NE/K015419/1; NE/N014472/1) and the Wildlife Conservation Society (AJP)

    Methods for calculating Protection Equality for conservation planning

    Get PDF
    Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth’s land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity’s Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an “ecologically representative” sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country’s borders are protected. Extending research in Barr et al. (2011), we present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country’s PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats

    Revisiting “Success” and “Failure” of Marine Protected Areas: A Conservation Scientist Perspective

    Get PDF
    Marine protected areas (MPAs) form the cornerstone of marine conservation. Identifying which factors contribute to their success or failure is crucial considering the international conservation targets for 2020 and the limited funds generally available for marine conservation. We identified common factors of success and/or failure of MPA effectiveness using peer-reviewed publications and first-hand expert knowledge for 27 case studies around the world. We found that stakeholder engagement was considered to be the most important factor affecting MPA success, and equally, its absence, was the most important factor influencing failure. Conversely, while some factors were identified as critical for success, their absence was not considered a driver of failure, and vice versa. This mismatch provided the impetus for considering these factors more critically. Bearing in mind that most MPAs have multiple objectives, including non-biological, this highlights the need for the development and adoption of standardized effectiveness metrics, besides biological considerations, to measure factors contributing to the success or failure of MPAs to reach their objectives. Considering our conclusions, we suggest the development of specific protocols for the assessment of stakeholder engagement, the role of leadership, the capacity of enforcement and compliance with MPAs objectives. Moreover, factors defining the success and failure of MPAs should be assessed not only by technical experts and the relevant authorities, but also by other stakeholder groups whose compliance is critical for the successful functioning of an MPA. These factors should be considered along with appropriate ecological, social, and economic data and then incorporated into adaptive management to improve MPA effectiveness
    corecore