1,846 research outputs found

    Rotor systems research aircraft simulation mathematical model

    Get PDF
    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle

    Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems - Final report (LK09106/HGCA3447)

    Get PDF
    As costs for mineral fertilisers rise, legume-based leys are recognised as a potential alternative nitrogen source for crops. Here we demonstrate that including species-rich legume-based leys in rotations helps to maximise synergies between agricultural productivity and other ecosystem services. By using functionally diverse plant species mixtures, these services can be optimised and fine-tuned to regional and farm-specific needs. Replicated field experiments were conducted over three years at multiple locations, testing the performance of 12 legume species and 4 grass species sown in monocultures, as well as in a mixture of 10 of the legumes and all 4 grasses (called the All Species Mix, ASM). In addition, we compared this complex mixture to farmer-chosen ley mixtures on 34 sites across the UK. The trials showed that there is a large degree of functional complementarity among the legume species. No single species scored high on all evaluation criteria. In particular, the currently most frequently used species, white clover, is outscored by other legume species on a number of parameters such as early development and resistance to decomposition. Further complementarity emerged from the different responses of legume species to environmental variables, with soil pH and grazing or cutting regime being among the more important factors. For example, while large birdsfoot trefoil showed better performance on more acidic soils, the opposite was true for sainfoin, lucerne and black medic. In comparison with the monocultures, the ASM showed increased ground cover, increased above-ground biomass and reduced weed biomass. Benefits of mixing species with regard to productivity increased over time. In addition, the stability of biomass production across sites was greater in the ASM than in the legume monocultures. Within the on-farm trials, we further found that on soils low in organic matter the biomass advantage of the ASM over the Control ley was more marked than on the soils with higher organic matter content. Ecological modelling revealed that the three best multifunctional mixtures all contained black medic, lucerne and red clover. Within the long term New Farming Systems (NFS) rotational study, the use of a clover bi-crop showed improvement to soil characteristics compared to current practice (e.g. bulk density and water infiltration rate). Improvements in wheat yield were also noted with respect to the inclusion of a clover bi-crop in 2010, but there was evidence of a decline in response as the N dose was increased. Cumulatively, over both the wheat crop and the spring oilseed rape crop, the clover bi-crop improved margin over N. The highest average yield response (~9%) was associated with the ASM legume species mix cover cropping approach

    Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs) are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters.</p> <p>Results</p> <p>Putative ETP gene clusters are present in 14 ascomycete taxa, but absent in numerous other ascomycetes examined. These clusters are discontinuously distributed in ascomycete lineages. Gene content is not absolutely fixed, however, common genes are identified and phylogenies of six of these are separately inferred. In each phylogeny almost all cluster genes form monophyletic clades with non-cluster fungal paralogues being the nearest outgroups. This relatedness of cluster genes suggests that a progenitor ETP gene cluster assembled within an ancestral taxon. Within each of the cluster clades, the cluster genes group together in consistent subclades, however, these relationships do not always reflect the phylogeny of ascomycetes. Micro-synteny of several of the genes within the clusters provides further support for these subclades.</p> <p>Conclusion</p> <p>ETP gene clusters appear to have a single origin and have been inherited relatively intact rather than assembling independently in the different ascomycete lineages. This progenitor cluster has given rise to a small number of distinct phylogenetic classes of clusters that are represented in a discontinuous pattern throughout ascomycetes. The disjunct heredity of these clusters is discussed with consideration to multiple instances of independent cluster loss and lateral transfer of gene clusters between lineages.</p

    Feasibility of a streamlined tuberculosis diagnosis and treatment initiation strategy.

    Get PDF
    OBJECTIVE: To assess the feasibility of a streamlined strategy for improving tuberculosis (TB) diagnostic evaluation and treatment initiation among patients with presumed TB. DESIGN: Single-arm interventional pilot study at five primary care health centers of a streamlined, SIngle-saMPLE (SIMPLE) TB diagnostic evaluation strategy: 1) examination of two smear results from a single spot sputum specimen using light-emitting diode fluorescence microscopy, and 2) daily transportation of smear-negative sputum samples to Xpert® MTB/RIF testing sites. RESULTS: Of 1212 adults who underwent sputum testing for TB, 99.6% had two smears examined from the spot sputum specimen. Sputum was transported for Xpert testing within 1 clinic day for 83% (907/1091) of the smear-negative patients. Of 157 (13%) patients with bacteriologically positive TB, 116 (74%) were identified using sputum smear microscopy and 41 (26%) using Xpert testing of smear-negative samples. Anti-tuberculosis treatment was initiated in 142 (90%) patients with bacteriologically positive TB, with a median time to treatment of 1 day for smear-positive patients and 6 days for smear-negative, Xpert-positive patients. CONCLUSION: The SIMPLE TB strategy led to successful incorporation of Xpert testing and rapid treatment initiation in the majority of patients with bacteriologically confirmed TB in a resource-limited setting

    Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    Get PDF
    A measurement of the double-differential π±\pi^{\pm} production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta <2.15 \rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)

    Absolute Momentum Calibration of the HARP TPC

    Get PDF
    In the HARP experiment the large-angle spectrometer is using a cylindrical TPC as main tracking and particle identification detector. The momentum scale of reconstructed tracks in the TPC is the most important systematic error for the majority of kinematic bins used for the HARP measurements of the double-differential production cross-section of charged pions in proton interactions on nuclear targets at large angle. The HARP TPC operated with a number of hardware shortfalls and operational mistakes. Thus it was important to control and characterize its momentum calibration. While it was not possible to enter a direct particle beam into the sensitive volume of the TPC to calibrate the detector, a set of physical processes and detector properties were exploited to achieve a precise calibration of the apparatus. In the following we recall the main issues concerning the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. As a conclusion, this analysis demonstrates that the measurement of momentum is correct within the published precision of 3%.Comment: To be published by JINS
    corecore