46 research outputs found

    The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4 < Z < 1.6

    Get PDF
    We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M>4×1010{M}_{\star }\gt 4\times {10}^{10} M{M}_{\odot }) in three known overdensities at 1.39<z<1.611.39\lt z\lt 1.61 from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to −0.10 ± 0.09, −0.19 ± 0.05, and −0.29 ± 0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (logM/M>11\mathrm{log}{M}_{\star }/{M}_{\odot }\gt 11) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding ΔlogM/LB=(0.46±0.10)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.46\pm 0.10)z, ΔlogM/LB=(0.52±0.07)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.52\pm 0.07)z, to ΔlogM/LB=(0.55±0.10)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.55\pm 0.10)z, respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ~6%–35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.330.51+0.86{2.33}_{-0.51}^{+0.86} Gyr for the logM/M>11\mathrm{log}{M}_{\star }/{M}_{\odot }\gt 11 galaxies in our massive and virialized cluster at z = 1.39, 1.590.62+1.40{1.59}_{-0.62}^{+1.40} Gyr in a massive but not virialized cluster at z = 1.46, and 1.200.47+1.03{1.20}_{-0.47}^{+1.03} Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    The KMOS Cluster Survey (KCS) II - The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.391.611.39 1.61

    Get PDF
    We present results on the structural properties of massive passive galaxies in three clusters at 1.39<z<1.61 from the KMOS Cluster Survey. We measure light-weighted and mass-weighted sizes from optical and near-infrared Hubble Space Telescope imaging and spatially resolved stellar mass maps. The rest-frame R-band sizes of these galaxies are a factor of ∼2−3 smaller than their local counterparts. The slopes of the relation between the stellar mass and the light-weighted size are consistent with recent studies in clusters and the field. Their mass-weighted sizes are smaller than the rest frame R-band sizes, with an average mass-weighted to light-weighted size ratio that varies between ∼0.45 and 0.8 among the clusters. We find that the median light-weighted size of the passive galaxies in the two more evolved clusters is ∼24% larger than for field galaxies, independent of the use of circularized effective radii or semi-major axes. These two clusters also show a smaller size ratio than the less evolved cluster, which we investigate using color gradients to probe the underlying M∗/LH160 gradients. The median color gradients are ∇z−H∼−0.4 mag dex−1, twice the local value. Using stellar populations models, these gradients are best reproduced by a combination of age and metallicity gradients. Our results favor the minor merger scenario as the dominant process responsible for the observed galaxy properties and the environmental differences at this redshift. The environmental differences support that clusters experience accelerated structural evolution compared to the field, likely via an epoch of enhanced minor merger activity during cluster assembly

    Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39

    Get PDF
    We analyse the sizes, colour gradients and resolved stellar mass distributions for 36 massive and passive galaxies in the cluster XMMUJ2235-2557 at z = 1.39 using optical and near-infrared Hubble Space Telescope (HST) imaging. We derive light-weighted Sérsic fits in five HST bands (i775, z850, Y105, J125, H160), and find that the size decreases by ~20 per cent going from i775 to H160 band, consistent with recent studies. We then generate spatially resolved stellar mass maps using an empirical relationship between M*/LH160 and (z850- H160) and use these to derive mass-weighted Sérsic fits: the mass-weighted sizes are ~41 per cent smaller than their rest-frame r-band counterparts compared with an average of ~12 per cent at z ~ 0. We attribute this evolution to the evolution in the M*/LH160 and colour gradient. Indeed, as expected, the ratio of mass-weighted to light-weighted size is correlated with the M*/L gradient, but is also mildly correlated with the mass surface density and mass-weighted size. The colour gradients (∇z- H) are mostly negative, with a median value of ~0.45 mag dex-1, twice the local value. The evolution is caused by an evolution in age gradients along the semimajor axis (a), with ∇age = dlog (age)/dlog (a) ~- 0.33, while the survival of weaker colour gradients in old, local galaxies implies that metallicity gradients are also required, with ∇Z = dlog (Z)/dlog (a) ~- 0.2. This is consistent with recent observational evidence for the inside-out growth of passive galaxies at high redshift, and favours a gradual mass growth mechanism, such as minor mergers

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom:1990-2020

    Get PDF
    Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990-2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926g±g13gTggCgyr-1, while eight other BU sources report a mean value of 948 [937,961]gTggCgyr-1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875gTggC in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for -91g±g32gTggCgyr-1, while six other BU approaches reported a mean sink of -62 [-117,-49]gTggCgyr-1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported -69 [-152,-5]gTggCgyr-1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of -73gTggCgyr-1 has a slightly smaller spread (0th-100th percentiles of [-135,+45]gTggCgyr-1), and it was calculated after removing net land-atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (-0.61)gTggCgyr-2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000gTggCgyr-1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at 10.5281/zenodo.8148461 (McGrath et al., 2023).</p

    Seven features of safety in maternity units: a framework based on multisite ethnography and stakeholder consultation

    Get PDF
    Background: Reducing avoidable harm in maternity services is a priority globally. As well as learning from mistakes, it is important to produce rigorous descriptions of ‘what good looks like’. Objective: We aimed to characterise features of safety in maternity units and to generate a plain language framework that could be used to guide learning and improvement. Methods: We conducted a multisite ethnography involving 401 hours of non-participant observations 33 semistructured interviews with staff across six maternity units, and a stakeholder consultation involving 65 semistructured telephone interviews and one focus group. Results: We identified seven features of safety in maternity units and summarised them into a framework, named For Us (For Unit Safety). The features include: (1) commitment to safety and improvement at all levels, with everyone involved; (2) technical competence, supported by formal training and informal learning; (3) teamwork, cooperation and positive working relationships; (4) constant reinforcing of safe, ethical and respectful behaviours; (5) multiple problem-sensing systems, used as basis of action; (6) systems and processes designed for safety, and regularly reviewed and optimised; (7) effective coordination and ability to mobilise quickly. These features appear to have a synergistic character, such that each feature is necessary but not sufficient on its own: the features operate in concert through multiple forms of feedback and amplification. Conclusions: This large qualitative study has enabled the generation of a new plain language framework—For Us—that identifies the behaviours and practices that appear to be features of safe care in hospital-based maternity units

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
    corecore