102 research outputs found

    Word reading and translation in bilinguals: the impact of formal and informal translation expertise

    Get PDF
    Studies on bilingual word reading and translation have examined the effects of lexical variables (e.g., concreteness, cognate status) by comparing groups of non-translators with varying levels of L2 proficiency. However, little attention has been paid to another relevant factor: translation expertise (TI). To explore this issue, we administered word reading and translation tasks to two groups of non-translators possessing different levels of informal TI (Experiment 1), and to three groups of bilinguals possessing different levels of translation training (Experiment 2). Reaction-time recordings showed that in all groups reading was faster than translation and unaffected by concreteness and cognate effects. Conversely, in both experiments, all groups translated concrete and cognate words faster than abstract and non-cognate words, respectively. Notably, an advantage of backward over forward translation was observed only for low-proficiency non-translators (in Experiment 1). Also, in Experiment 2, the modifications induced by translation expertise were more marked in the early than in the late stages of training and practice. The results suggest that TI contributes to modulating inter-equivalent connections in bilingual memory.Fil: García, Adolfo Martín. Universidad Nacional de Córdoba; Argentina. Universidad Diego Portales; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Ibáñez Barassi, Agustín Mariano. Universidad Diego Portales; Chile. Universidad Autónoma del Caribe; Colombia. Australian Research Council; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Huepe, David. Universidad Diego Portales; ChileFil: Houck, Alexander L.. University of Tennessee; Estados UnidosFil: Michon, Maeva. Universidad Diego Portales; ChileFil: Gelormini Lezama, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Chadha, Sumeer. Universidad Diego Portales; ChileFil: Rivera Rei, Álvaro. Universidad Diego Portales; Chil

    [CII] 158 micron Luminosities and Star Formation Rate in Dusty Starbursts and AGN

    Get PDF
    Results are presented for [CII] 158 micron line fluxes observed with the Herschel PACS instrument in 112 sources with both starburst and AGN classifications, of which 102 sources have confident detections. Results are compared with mid-infrared spectra from the Spitzer Infrared Spectrometer and with L(IR) from IRAS fluxes; AGN/starburst classifications are determined from equivalent width of the 6.2 micron PAH feature. It is found that the [CII] line flux correlates closely with the flux of the 11.3 micron PAH feature independent of AGN/starburst classification, log [f([CII] 158 micron)/f(11.3 micron PAH)] = -0.22 +- 0.25. It is concluded that [CII] line flux measures the photodissociation region associated with starbursts in the same fashion as the PAH feature. A calibration of star formation rate for the starburst component in any source having [CII] is derived comparing [CII] luminosity L([CII]) to L(IR) with the result that log SFR = log L([CII)]) - 7.08 +- 0.3, for SFR in solar masses per year and L([CII]) in solar luminosities. The decreasing ratio of L([CII]) to L(IR) in more luminous sources (the "[CII] deficit") is shown to be a consequence of the dominant contribution to L(IR) arising from a luminous AGN component because the sources with largest L(IR) and smallest L([CII])/L(IR) are AGN.Comment: Accepted for publication in The Astrophysical Journa

    Detections of CO Molecular Gas in 24um-Bright ULIRGs at z~2 in the Spitzer First Look Survey

    Get PDF
    We present CO observations of 9 ULIRGs at z~2 with S(24\mu m)>1mJy, previously confirmed with the mid-IR spectra in the Spitzer First Look Survey. All targets are required to have accurate redshifts from Keck/GEMINI near-IR spectra. Using the Plateau de Bure millimeter-wave Interferometer (PdBI) at IRAM, we detect CO J(3-2) [7 objects] or J(2-1) [1 object] line emission from 8 sources with integrated intensities Ic ~(5-9)sigma. The CO detected sources have a variety of mid-IR spectra, including strong PAH, deep silicate absorption and power-law continuum, implying that these molecular gas rich objects at z~2 could be either starbursts or dust obscured AGNs. The measured line luminosity L'[CO] is (1.28-3.77)e+10[K km/s pc^2]. The averaged molecular gas mass M(H2) is 1.7e+10Msun, assuming CO-to-H2 conversion factor of 0.8Msun/[K km/s pc^2]. Three sources (33%) -- MIPS506, MIPS16144 & MIPS8342 -- have double peak velocity profiles. The CO double peaks in MIPS506 and MIPS16144 show spatial separations of 45kpc and 10.9kpc, allowing the estimates of the dynamical masses of 3.2e+11*sin^(-2)(i)Msun and 5.4e+11*sin^{-2}(i)Msun respectively. The implied gas fraction, M(gas)/M(dyn), is 3% and 4%, assuming an average inclination angle. Finally, the analysis of the HST/NIC2 images, mid-IR spectra and IR SED revealed that most of our sources are mergers, containing dust obscured AGNs dominating the luminosities at (3-6)um. Together, these results provide some evidence suggesting SMGs, bright 24um z~2 ULIRGs and QSOs could represent three different stages of a single evolutionary sequence, however, a complete physical model would require much more data, especially high spatial resolution spectroscopy.Comment: 15 pages, 8 figures, accepted for publication in ApJ

    Black Hole Masses and Star Formation Rates of z >1 Dust Obscured Galaxies (DOGs): Results from Keck OSIRIS Integral Field Spectroscopy

    Get PDF
    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z~1.5 ultra-luminous infrared galaxies that exhibit broad H-alpha emission lines indicative of strong AGN activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0.1", or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions --- possibly powered by star formation --- from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(H-alpha)=4.8 mag, the observations suggest lower limits on the black hole masses of (1 - 9) x 10^8 solar masses, and star formation rates <100 solar masses per year. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations including, host galaxy fading, black hole growth, and the shut down of star formation.Comment: Accepted for publication in the Astronomical Journal. 12 pages, 6 figures, 5 table

    Paschen-alpha Emission in the Gravitationally Lensed Galaxy SMM J163554.2+661225

    Get PDF
    We report the detection of the Paschen-alpha emission line in the z=2.515 galaxy SMM J163554.2+661225 using Spitzer spectroscopy. SMM J163554.2+661225 is a sub-millimeter-selected infrared (IR)-luminous galaxy maintaining a high star-formation rate (SFR), with no evidence of an AGN from optical or infrared spectroscopy, nor X-ray emission. This galaxy is lensed gravitationally by the cluster Abell 2218, making it accessible to Spitzer spectroscopy. Correcting for nebular extinction derived from the H-alpha and Pa-alpha lines, the dust-corrected luminosity is L(Pa-alpha) = (2.57+/-0.43) x 10^43 erg s^-1, which corresponds to an ionization rate, Q = (1.6+/-0.3) x 10^55 photons s^-1. The instantaneous SFR is 171+/-28 solar masses per year, assuming a Salpeter-like initial mass function. The total IR luminosity derived using 70, 450, and 850 micron data is L(IR) = (5-10) x 10^11 solar luminosities, corrected for gravitational lensing. This corresponds to a SFR=90-180 solar masses per year, where the upper range is consistent with that derived from the Paschen-alpha luminosity. While the L(8 micron) / L(Pa-alpha) ratio is consistent with the extrapolated relation observed in local galaxies and star-forming regions, the rest-frame 24 micron luminosity is significantly lower with respect to local galaxies of comparable Paschen-alpha luminosity. Thus, SMM J163554.2+661225 arguably lacks a warmer dust component (T ~ 70 K), which is associated with deeply embedded star formation, and which contrasts with local galaxies with comparable SFRs. Rather, the starburst is consistent with star-forming local galaxies with intrinsic luminosities, L(IR) ~ 10^10 solar luminosities, but "scaled-up" by a factor of 10-100.Comment: Published in the Astrophysical Journal. 14 pages in emulateapj format, 9 figures (many in color

    Statistical Characterization of the Chandra Source Catalog

    Full text link
    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point source populations.Comment: To be published in the Astrophysical Journal Supplement Series (Fig. 52 replaced with a version which astro-ph can convert to PDF without issues.

    A backward evolution model for infrared surveys: the role of AGN- and Color-L_TIR distributions

    Full text link
    Empirical "backward" galaxy evolution models for infrared bright galaxies are constrained using multi-band infrared surveys. We developed a new Monte-Carlo algorithm for this task, implementing luminosity dependent distribution functions for the galaxies' infrared spectral energy distributions (SEDs) and for the AGN contribution, allowing for evolution of these quantities. The adopted SEDs take into account the contributions of both starbursts and AGN to the infrared emission, for the first time in a coherent treatment rather than invoking separate AGN and star-forming populations. In the first part of the paper we consider the quantification of the AGN contribution for local universe galaxies, as a function of total infrared luminosity. It is made using a large sample of LIRGs and ULIRGs for which mid-infrared spectra are available in the Spitzer archive. In the second part we present the model. Our best-fit model adopts very strong luminosity evolution, L=L0(1+z)3.4L=L_0(1+z)^{3.4}, up to z=2.3z=2.3, and density evolution, ρ=ρ0(1+z)2\rho=\rho_0(1+z)^2, up to z=1z=1, for the population of infrared galaxies. At higher zz, the evolution rates drop as (1+z)1(1+z)^{-1} and (1+z)1.5(1+z)^{-1.5} respectively. To reproduce mid-infrared to submillimeter number counts and redshift distributions, it is necessary to introduce both an evolution in the AGN contribution and an evolution in the luminosity-temperature relation. Our models are in plausible agreement with current photometry-based estimates of the typical AGN contribution as a function of mid-infrared flux, and well placed to be compared to upcoming Spitzer spectroscopic results. As an example of future applications, we use our best-fitting model to make predictions for surveys with Herschel.Comment: Model available at: (http://www.physics.ubc.ca/~valiante/model) ApJ accepte

    On the origin of [Ne II] emission in young stars: mid-infrared and optical observations with the Very Large Telescope

    Get PDF
    {Abridged version for ArXiv}. We provide direct constraints on the origin of the [Ne II] emission in 15 young stars using high-spatial and spectral resolution observations with VISIR at the VLT that allow us to study the kinematics of the emitting gas. In addition we compare the [Ne II] line with optical forbidden lines observed for three stars with UVES. The [Ne II] line was detected in 7 stars, among them the first confirmed detection of [Ne II] in a Herbig Be star, V892 Tau. In four cases, the large blueshifted lines indicate an origin in a jet. In two stars, the small shifts and asymmetric profiles indicate an origin in a photo-evaporative wind. CoKu Tau 1, seen close to edge-on, shows a spatially unresolved line centered at the stellar rest velocity, although cross-dispersion centroids move within 10 AU from one side of the star to the other as a function of wavelength. The line profile is symmetric with wings extending up to about +-80 km/s. The origin of the [Ne II] line could either be due to the bipolar jet or to the disk. For the stars with VLT-UVES observations, in several cases, the optical forbidden line profiles and shifts are very similar to the profile of the [Ne II] line, suggesting that the lines are emitted in the same region. A general trend observed with VISIR is a lower line flux when compared with the fluxes obtained with Spitzer. We found no correlation between the line full-width at half maximum and the line peak velocity. The [Ne II] line remains undetected in a large part of the sample, an indication that the emission detected with Spitzer in those stars is likely extended.Comment: Accepted for publication in Astronomy & Astrophysics; revised version: corrected minor typos, corrected center values (col 3) for CoKuTau1 in Table

    A New Population of High Redshift, Dusty Lyman-Alpha Emitters and Blobs Discovered by WISE

    Get PDF
    We report a new technique to select 1.6<z<4.6 dusty Lyman-alpha emitters (LAEs), over a third of which are `blobs' (LABs) with emission extended on scales of 30-100kpc. Combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W.M. Keck telescope, we present a color criteria that yields a 78% success rate in identifying rare, dusty LAEs of which at least 37% are LABs. The objects have a surface density of only ~0.1 per square degree, making them rare enough that they have been largely missed in narrow surveys. We measured spectroscopic redshifts for 92 of these WISE-selected, typically radio-quiet galaxies and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel reveals that these galaxies have extreme far-infrared luminosities (L_IR>10^{13-14}L_sun) and warm colors, typically larger than submillimeter-selected galaxies (SMGs) and dust-obscured galaxies (DOGs). These traits are commonly associated with the dust being energized by intense AGN activity. We hypothesize that the combination of spatially extended Lyman-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing strong `feedback' transforming them from an extreme dusty starburst to a QSO.Comment: Submitted to ApJ Letters, 6 pages, 4 figures. Comments welcom
    corecore