193 research outputs found

    Chandra's Close Encounter with the Disintegrating Comets 73P/2006 (Schwassmann--Wachmann--3) Fragment B and C/1999 S4 (LINEAR)

    Full text link
    On May 23, 2006 we used the ACIS-S instrument on the Chandra X-ray Observatory (CXO) to study the X-ray emission from the B fragment of comet 73P/2006 (Schwassmann-Wachmann 3) (73P/B). We obtained a total of 20 ks of CXO observation time of Fragment B, and also investigated contemporaneous ACE and SOHO solar wind physical data. The CXO data allow us to spatially resolve the detailed structure of the interaction zone between the solar wind and the fragment's coma at a resolution of ~ 1,000 km, and to observe the X-ray emission due to multiple comet--like bodies. We detect a change in the spectral signature with the ratio of the CV/OVII line increasing with increasing collisional opacity as predicted by Bodewits \e (2007). The line fluxes arise from a combination of solar wind speed, the species that populate the wind and the gas density of the comet. We are able to understand some of the observed X-ray morphology in terms of non-gravitational forces that act upon an actively outgassing comet's debris field. We have used the results of the Chandra observations on the highly fragmented 73P/B debris field to re-analyze and interpret the mysterious emission seen from comet C/1999 S4 (LINEAR) on August 1st, 2000, after the comet had completely disrupted. We find the physical situations to be similar in both cases, with extended X-ray emission due to multiple, small outgassing bodies in the field of view. Nevertheless, the two comets interacted with completely different solar winds, resulting in distinctly different spectra.Comment: accepted by ApJ, 44 Pages, including 4 tables and 14 figure

    Scientific Preparations for Lunar Exploration with the European Lunar Lander

    Full text link
    This paper discusses the scientific objectives for the ESA Lunar Lander Mission, which emphasise human exploration preparatory science and introduces the model scientific payload considered as part of the on-going mission studies, in advance of a formal instrument selection.Comment: Accepted for Publication in Planetary and Space Science 51 pages, 8 figures, 1 tabl

    Új generációs szekvenálás és használata az aneuploidiák nem invaziv praenatalis vizsgálatában

    Get PDF
    The development of the new generation sequencing techniques brought a new era in the field of DNA sequencing, that also revolutionized the prenatal screening for aneuploidy. In order to provide a more complete view, the authors describe some first generation methods as well as the theoretical and technical background of the next generation methods. In the second part of this review, the authors focuse on non-invasive prenatal testing, which is a fetal cell-free DNA based method requiring advanced sequencing procedures. After discussing the theoretical and technical background, the authors review current application and utility of non-invasive prenatal testing. They conclude that non-invasive prenatal testing is the most effective screening test in high risk pregnancies and its efficiency can be justified in studies involving low risk pregnancies as well. Orv. Hetil., 2015, 156(26), 1041-1048

    Paroxysmalis nocturnalis haemoglobinuriával szövődött várandósság ritka esete

    Get PDF
    Paroxysmal nocturnal hemoglobinuria is a rare hematological disease. It is associated with increased maternal and fetal complications to such an extent that pregnancy has been considered relatively contraindicated in woman with paroxysmal nocturnal haemoglobinuria. Recently, eculizumab, a monoclonal antibody, has been shown to decrease complications during pregnancies. The highest risk is thromboembolic complication and, therefore, anticoagulant is a standard therapy during pregnancy. In the presented case, a 29-year-old woman with a 5-year history of paroxysmal nocturnal haemoglobinuria had a pregnancy. It was her first pregnancy and was complicated by a sinus thrombosis at the 11th gestational week. After the introduction of eculizumab treatment, the remaining period of pregnancy and delivery were uncomplicated. There are only a few cases in the literature about pregnancy in woman with paroxysmal nocturnal hemoglobinuria who are treated with eculizumab. This monoclonal antibody seems to be safe and it likely prevents many of the complications otherwise observed. Orv. Hetil., 2016, 157(23), 916-918

    Overview of the New Horizons Science Payload

    Full text link
    The New Horizons mission was launched on 2006 January 19, and the spacecraft is heading for a flyby encounter with the Pluto system in the summer of 2015. The challenges associated with sending a spacecraft to Pluto in less than 10 years and performing an ambitious suite of scientific investigations at such large heliocentric distances (> 32 AU) are formidable and required the development of lightweight, low power, and highly sensitive instruments. This paper provides an overview of the New Horizons science payload, which is comprised of seven instruments. Alice provides spatially resolved ultraviolet spectroscopy. The Ralph instrument has two components: the Multicolor Visible Imaging Camera (MVIC), which performs panchromatic and color imaging, and the Linear Etalon Imaging Spectral Array (LEISA), which provides near-infrared spectroscopic mapping capabilities. The Radio Experiment (REX) is a component of the New Horizons telecommunications system that provides both occultation and radiometry capabilities. The Long Range Reconnaissance Imager (LORRI) provides high sensitivity, high spatial resolution optical imaging capabilities. The Solar Wind at Pluto (SWAP) instrument measures the density and speed of solar wind particles. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) measures energetic protons and CNO ions. The Venetia Burney Student Dust Counter (VB-SDC) is used to record dust particle impacts during the cruise phases of the mission.Comment: 17 pages, 4 figures, 1 table; To appear in a special volume of Space Science Reviews on the New Horizons missio

    LADEE Science Results and Implications for Exploration

    Get PDF
    NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results

    Synergies between interstellar dust and heliospheric science with an interstellar probe

    Get PDF
    We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavours, and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an interstellar probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute – through measuring dust – to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it ‘rolls’ into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions

    Synergies between interstellar dust and heliospheric science with an Interstellar Probe

    Full text link
    We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavors and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an Interstellar Probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute-through measuring dust - to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it `rolls' into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions.Comment: 18 pages, 7 Figures, 5 Tables. Originally submitted as white paper for the National Academies Decadal Survey for Solar and Space Physics 2024-203

    The geology and geophysics of Kuiper Belt object (486958) Arrokoth

    Get PDF
    The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism

    The 2016 Feb 19 Outburst of Comet 67P/CG: An ESA Rosetta Multi-Instrument Study

    Get PDF
    On 19 Feb. 2016 nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in-situ gas, dust and plasma instruments, and one dust collector. At 9:40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50% of the neutral gas density at Rosetta to factors >100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors >10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from ∼−16 V to −20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta (34 km from the nucleus): within 15 minutes the Star Tracker camera detected fast particles (∼25 m s−1) while 100 μm radius particles were detected by the GIADA dust instrument ∼1 hour later at a speed of ~6 m s−1. The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined
    corecore