177 research outputs found

    Measuring very negative water potentials with polymer tensiometers: principles, performance and applications

    Get PDF
    In recent years, a polymer tensiometer (POT) was developed and tested to directly measure matric potentials in dry soils. By extending the measurement range to wilting point (a 20-fold increase compared to conventional, water-filled tensiometers), a myriad of previously unapproachable research questions are now open to experimental exploration. Furthermore, the instrument may well allow the development of more water-efficient irrigation strategies by recording water potential rather than soil water content. The principle of the sensor is to fill it with a polymer solution instead of water, thereby building up osmotic pressure inside the sensor. A high-quality ceramic allows the exchange of water with the soil while retaining the polymer. The ceramic has pores sufficiently small to remain saturated even under very negative matric potentials. Installing the sensor in an unsaturated soil causes the high pressure of the polymer solution to drop as the water potentials in the soil and in the POT equilibrate. As long as the pressure inside the polymer chamber remains sufficiently large to prevent cavitation, the sensor will function properly. If the osmotic potential in the polymer chamber can produce a pressure of approximately 2.0 MPa when the sensor is placed in water, proper readings down to wilting point are secured. Various tests in disturbed soil, including an experiment with root water uptake, demonstrate the operation and performance of the new polymer tensiometer and illustrate how processes such as root water uptake can be studied in more detail than before. The paper discusses the available data and explores the long term perspectives offered by the instrument

    Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils

    Get PDF
    Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately −0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximizing the ceramic area in contact with that polymer solution, response times drop to acceptable ranges for laboratory and field conditions. Contact with the soil is drastically improved with the use of cone-shaped solid ceramics instead of flat ceramics. The comparison between measured potentials by polymer tensiometers and indirectly obtained potentials with time domain reflectometry highlights the risk of using the latter method at low water contents. By combining POT and time domain reflectometry readings in situ moisture retention curves can be measured over the range permitted by the measurement range of both POT and time domain reflectometry

    Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years

    Get PDF
    Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.</p

    Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years

    Get PDF
    Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.</p

    Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years

    Get PDF
    Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.</p

    Once is an Instance, Twice is a Hobby: Multiple Optical and Near-Infrared Changing-Look Events in NGC 5273

    Full text link
    NGC 5273 is a known optical and X-ray variable AGN. We analyze new and archival IR, optical, UV, and X-ray data in order to characterize its long-term variability from 2000 to 2022. At least one changing-look event occurred between 2011 and 2014, when the AGN changed from a Type 1.8/1.9 Seyfert to a Type 1. It then faded considerably at all wavelengths, followed by a dramatic but slow increase in UV/optical brightness between 2021 and 2022. We propose that NGC 5273 underwent multiple changing-look events between 2000 and 2022 -- starting as a Type 1.8/1.9, NGC 5273 changes-look to a Type 1 only temporarily in 2002 and again in 2014, reverting back to a Type 1.8/1.9 by 2005 and 2017, respectively. In 2022, it is again a Type 1 Seyfert with optical and NIR broad emission lines. We characterize the changing-look events and their connection to the dynamic accretion and radiative processes in NGC 5273.Comment: 18 pages, 13 figures, 4 tables, submitting to MNRA

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    A Tale of Two Type Ia Supernovae: The Fast-declining Siblings SNe 2015bo and 1997cn

    Get PDF
    We thank the anonymous referee for their comments. W.B.H. acknowledges support from the Research Experience for Undergraduates program at the Institute for Astronomy, University of Hawaii-Manoa, funded through NSF grant #2050710. L.G. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MCIN) under the 2019 Ramon y Cajal program RYC2019-027683 and from the Spanish MCIN project HOSTFLOWS PID2020-115253GA-I00. M.G.M., R.G.D., and S.M.T. were funded by the European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No. 839090. Based on observations collected at the European Southern Observatory under ESO program 106.2104. The work of the CSP-II has been generously supported by the National Science Foundation under grant Nos. AST-1008343, AST-1613426, AST-1613455, and AST-1613472. The CSP-II was also supported in part by the Danish Agency for Science and Technology and Innovation through a Sapere Aude Level 2 grant. E.B. was partially supported by NASA grant No. 80NSSC20K0538 J.D.L. acknowledges support from a UK Research and Innovation Fellowship (MR/T020784/1). C.R.B. acknowledges support from NSF grant Nos. AST-1008384, AST-1613426, AST-1613455, and AST-1613472. M.S and S.H. are supported by grants from the VILLUM FONDEN (grant No. 28021) and the Independent Research Fund Denmark (IRFD; 8021-00170B).We present optical and near-infrared photometric and spectroscopic observations of the fast-declining Type Ia supernova (SN) 2015bo. SN 2015bo is underluminous (MB=−17.50 ± 0.15 mag) and has a fast-evolving light curve (Δm15(B)=1.91 ± 0.01 mag and sBV=0.48 ± 0.01). It has a unique morphology in the observed V −r color curve, where it is bluer than all other supernovae (SNe) in the comparison sample. A 56Ni mass of 0.17±0.03Me was derived from the peak bolometric luminosity, which is consistent with its location on the luminosity–width relation. Spectroscopically, SN 2015bo is a cool SN in the Branch classification scheme. The velocity evolution measured from spectral features is consistent with 1991bg-like SNe. SN 2015bo has a SN twin (similar spectra) and sibling (same host galaxy), SN 1997cn. Distance moduli of μ=34.33±0.01 (stat)± 0.11 (sys) mag and μ=34.34±0.04 (stat)±0.12 (sys) mag are derived for SN 2015bo and SN 1997cn, respectively. These distances are consistent at the 0.06σ level with each other, and they are also consistent with distances derived using surface-brightness fluctuations and redshift-corrected cosmology. This suggests that fast-declining SNe could be accurate distance indicators, which should not be excluded from future cosmological analyses.Research Experience for Undergraduates program at the Institute for Astronomy, University of Hawaii-ManoaNational Science Foundation (NSF) AST-1008384 AST-1613426 AST-1613455 AST-1613472Spanish Ministry of Science, Innovation and Universities (MCIN) RYC2019-027683Spanish MCIN project HOSTFLOWS PID2020-115253GA-I00European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie 839090 106.2104National Science Foundation (NSF) AST-1613426 AST-1613455 AST-1613472 AST-1008343Danish Agency for Science and Technology and Innovation through a Sapere Aude Level 2 grantNational Aeronautics & Space Administration (NASA) 80NSSC20K0538UK Research and Innovation Fellowship MR/T020784/1Villum Fonden 28021Independent Research Fund Denmark 8021-00170
    • …
    corecore