319 research outputs found

    Compton scattering beyond the impulse approximation

    Full text link
    We treat the non-relativistic Compton scattering process in which an incoming photon scatters from an N-electron many-body state to yield an outgoing photon and a recoil electron, without invoking the commonly used frameworks of either the impulse approximation (IA) or the independent particle model (IPM). An expression for the associated triple differential scattering cross section is obtained in terms of Dyson orbitals, which give the overlap amplitudes between the N-electron initial state and the (N-1) electron singly ionized quantum states of the target. We show how in the high energy transfer regime, one can recover from our general formalism the standard IA based formula for the cross section which involves the ground state electron momentum density (EMD) of the initial state. Our formalism will permit the analysis and interpretation of electronic transitions in correlated electron systems via inelastic x-ray scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur

    4f spin density in the reentrant ferromagnet SmMn2Ge2

    Full text link
    The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.

    Exponential distribution of long heart beat intervals during atrial fibrillation and their relevance for white noise behaviour in power spectrum

    Full text link
    The statistical properties of heart beat intervals of 130 long-term surface electrocardiogram recordings during atrial fibrillation (AF) are investigated. We find that the distribution of interbeat intervals exhibits a characteristic exponential tail, which is absent during sinus rhythm, as tested in a corresponding control study with 72 healthy persons. The rate of the exponential decay lies in the range 3-12 Hz and shows diurnal variations. It equals, up to statistical uncertainties, the level of the previously uncovered white noise part in the power spectrum, which is also characteristic for AF. The overall statistical features can be described by decomposing the intervals into two statistically independent times, where the first one is associated with a correlated process with 1/f noise characteristics, while the second one belongs to an uncorrelated process and is responsible for the exponential tail. It is suggested to use the rate of the exponential decay as a further parameter for a better classification of AF and for the medical diagnosis. The relevance of the findings with respect to a general understanding of AF is pointed out

    Theory of inelastic lifetimes of low-energy electrons in metals

    Full text link
    Electron dynamics in the bulk and at the surface of solid materials are well known to play a key role in a variety of physical and chemical phenomena. In this article we describe the main aspects of the interaction of low-energy electrons with solids, and report extensive calculations of inelastic lifetimes of both low-energy electrons in bulk materials and image-potential states at metal surfaces. New calculations of inelastic lifetimes in a homogeneous electron gas are presented, by using various well-known representations of the electronic response of the medium. Band-structure calculations, which have been recently carried out by the authors and collaborators, are reviewed, and future work is addressed.Comment: 28 pages, 18 figures, to appear in Chem. Phy

    Density functional theories and self-energy approaches

    Get PDF
    A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the Îłp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
    • …
    corecore