28 research outputs found

    MYND: Unsupervised Evaluation of Novel BCI Control Strategies on Consumer Hardware

    Full text link
    Neurophysiological studies are typically conducted in laboratories with limited ecological validity, scalability, and generalizability of findings. This is a significant challenge for the development of brain-computer interfaces (BCIs), which ultimately need to function in unsupervised settings on consumer-grade hardware. We introduce MYND: A framework that couples consumer-grade recording hardware with an easy-to-use application for the unsupervised evaluation of BCI control strategies. Subjects are guided through experiment selection, hardware fitting, recording, and data upload in order to self-administer multi-day studies that include neurophysiological recordings and questionnaires. As a use case, we evaluate two BCI control strategies ("Positive memories" and "Music imagery") in a realistic scenario by combining MYND with a four-channel electroencephalogram (EEG). Thirty subjects recorded 70.4 hours of EEG data with the system at home. The median headset fitting time was 25.9 seconds, and a median signal quality of 90.2% was retained during recordings.Neural activity in both control strategies could be decoded with an average offline accuracy of 68.5% and 64.0% across all days. The repeated unsupervised execution of the same strategy affected performance, which could be tackled by implementing feedback to let subjects switch between strategies or devise new strategies with the platform.Comment: 9 pages, 5 figures. Submitted to PNAS. Minor revisio

    Why farmers should manage the arbuscular mycorrhizal symbiosis

    Get PDF
    The Tansley review by Ryan & Graham (2018) provided a welcome critical perspective on the role of arbuscular mycorrhizal (AM) fungi in large‐scale industrial agriculture, with a focus on cereals (wheat, Triticum aestivum). They conclude that there is little evidence that farmers should consider the abundance or diversity of AM fungi when managing crops. We welcome many of the points made in the paper, as they give an opportunity for self‐reflection, considering that the importance of AM fungi in agroecosystems is often taken for granted. However, we suggest that it is too early to draw the overall conclusion that the management of AM fungi by farmers is currently not warranted. We offer the following points to contribute to the discussion. The first point pertains to the overall focus of Ryan & Graham (2018), which strongly determines the recommendations at which the authors arrive. This scope is limited to yield, at the expense of neglecting aspects of sustainability. We then argue that AM fungal communities do respond negatively to aspects of agricultural management, and list evidence for their positive effects to agronomically important traits, including yield in cereals. In our final argument, we advocate for transitioning to agroecosystems that are more AM compatible in order to increasingly take advantage of all the potential services these ancient symbionts, and other soil biota, can provide

    Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states

    Get PDF
    The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain\u27s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity\u27s intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain

    Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states

    Get PDF
    The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain\u27s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity\u27s intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain

    Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states

    Get PDF
    The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain\u27s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity\u27s intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain

    Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface

    Get PDF
    Lipopolysaccharide (LPS) O-antigen (O-Ag) is known to limit antibody binding to surface antigens, although the relationship between antibody, O-Ag and other outer-membrane antigens is poorly understood. Here we report, immunization with the trimeric porin OmpD from Salmonella Typhimurium (STmOmpD) protects against infection. Atomistic molecular dynamics simulations indicate this is because OmpD trimers generate footprints within the O-Ag layer sufficiently sized for a single IgG Fab to access. While STmOmpD differs from its orthologue in S. Enteritidis (SEn) by a single amino-acid residue, immunization with STmOmpD confers minimal protection to SEn. This is due to the OmpD-O-Ag interplay restricting IgG binding, with the pairing of OmpD with its native O-Ag being essential for optimal protection after immunization. Thus, both the chemical and physical structure of O-Ag are key for the presentation of specific epitopes within proteinaceous surface-antigens. This enhances combinatorial antigenic diversity in Gram-negative bacteria, while reducing associated fitness costs

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF
    corecore