732 research outputs found

    A Bayesian Estimate of the Primordial Helium Abundance

    Get PDF
    We introduce a new statistical method to estimate the primordial helium abundance, Y_p from observed abundances in a sample of galaxies which have experienced stellar helium enrichment. Rather than using linear regression on metal abundance we construct a likelihood function using a Bayesian prior, where the key assumption is that the true helium abundance must always exceed the primordial value. Using a sample of measurements compiled from the literature we find estimates of Y_p between 0.221 and 0.236, depending on the specific subsample and prior adopted, consistent with previous estimates either from a linear extrapolation of the helium abundance with respect to metallicity, or from the helium abundance of the lowest metallicity HII region, I Zw 18. We also find an upper limit which is insensitive to the specific subsample or prior, and estimate a model-independent bound Y_p < 0.243 at 95% confidence, favoring a low cosmic baryon density and a high primordial deuterium abundance. The main uncertainty is not the model of stellar enrichment but possible common systematic biases in the estimate of Y in each individual HII region.Comment: 14 pages, latex, 3 ps figure

    Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress

    Get PDF
    Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1α content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1α content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1α-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling

    A Strategy for Finding Near Earth Objects with the SDSS Telescope

    Full text link
    We present a detailed observational strategy for finding Near Earth Objects (NEOs) with the Sloan Digital Sky Survey (SDSS) telescope. We investigate strategies in normal, unbinned mode as well as binning the CCDs 2x2 or 3x3, which affects the sky coverage rate and the limiting apparent magnitude. We present results from 1 month, 3 year and 10 year simulations of such surveys. For each cadence and binning mode, we evaluate the possibility of achieving the Spaceguard goal of detecting 90% of 1 km NEOs (absolute magnitude H <= 18 for an albedo of 0.1). We find that an unbinned survey is most effective at detecting H <= 20 NEOs in our sample. However, a 3x3 binned survey reaches the Spaceguard Goal after only seven years of operation. As the proposed large survey telescopes (PanStarss; LSST) are at least 5-10 years from operation, an SDSS NEO survey could make a significant contribution to the detection and photometric characterization of the NEO population.Comment: Accepted by AJ -- 12 pages, 11 figure

    Supernova Limits on the Cosmic Equation of State

    Get PDF
    We use Type Ia supernovae studied by the High-Z Supernova Search Team to constrain the properties of an energy component which may have contributed to accelerating the cosmic expansion. We find that for a flat geometry the equation of state parameter for the unknown component, alpha_x=P_x/rho_x, must be less than -0.55 (95% confidence) for any value of Omega_m and is further limited to alpha_x<-0.60 (95%) if Omega_m is assumed to be greater than 0.1 . These values are inconsistent with the unknown component being topological defects such as domain walls, strings, or textures. The supernova data are consistent with a cosmological constant (alpha_x=-1) or a scalar field which has had, on average, an equation of state parameter similar to the cosmological constant value of -1 over the redshift range of z=1 to the present. Supernova and cosmic microwave background observations give complementary constraints on the densities of matter and the unknown component. If only matter and vacuum energy are considered, then the current combined data sets provide direct evidence for a spatially flat Universe with Omega_tot=Omega_m+Omega_Lambda = 0.94 +/- 0.26 (1-sigma).Comment: Accepted for publication in ApJ, 3 figure

    Use of procalcitonin for the diagnosis of pneumonia in patients presenting with a chief complaint of dyspnoea: results from the BACH (Biomarkers in Acute Heart Failure) trial

    Get PDF
    Biomarkers have proven their ability in the evaluation of cardiopulmonary diseases.We investigated the utility of concentrations of the biomarker procalcitonin (PCT) alone and with clinical variables for the diagnosis of pneumonia in patients presenting to emergency departments (EDs) with a chief complaint of shortness of breath. The BACH trial was a prospective, international, study of 1641 patients presenting to EDs with dyspnoea. Blood samples were analysed for PCT and other biomarkers. Relevant clinical data were also captured. Patient outcomes were assessed at 90 days. The diagnosis of pneumonia was made using strictly validated guidelines. A model using PCT was more accurate [area under the curve (AUC) 72.3%] than any other individual clinical variable for the diagnosis of pneumonia in all patients, in those with obstructive lung disease, and in those with acute heart failure (AHF). Combining physician estimates of the probability of pneumonia with PCT values increased the accuracy to .86% for the diagnosis of pneumonia in all patients. Patients with a diagnosis of AHF and an elevated PCT concentration (.0.21 ng/mL) had a worse outcome if not treated with antibiotics (P ¼ 0.046), while patients with low PCT values (,0.05 ng/mL) had a better outcome if they did not receive antibiotic therapy (P ¼ 0.049). Procalcitonin may aid in the diagnosis of pneumonia, particularly in cases with high diagnostic uncertainty. Importantly, PCT may aid in the decision to administer antibiotic therapy to patients presenting with AHF in which clinical uncertainty exists regarding a superimposed bacterial infection

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore