133 research outputs found

    Generalized dynamic reduction in finite element dynamic optimization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76662/1/AIAA-8826-211.pd

    Psychometrics of the patient-reported outcomes measurement information system measures in hemophilia:the applicability of the pediatric item banks

    Get PDF
    Background: The use of patient-reported outcomes measures (PROMs) is important in hemophilia care, as it facilitates communication between patients and clinicians and promotes patient-centered care. Currently, a variety of PROMs with insufficient psychometric properties are used. Patient-reported outcomes measurement information system (PROMIS) measures, including Computer Adaptive Tests, were designed to measure generically and more efficiently and, therefore, are an alternative for the existing PROMs. Objectives: To assess the feasibility, measurement properties, and outcomes of 8 PROMIS pediatric measures for boys with hemophilia. Methods: In this multicenter study, boys with hemophilia completed 8 PROMIS measures and 2 legacy instruments. Feasibility was determined by the number of completed items and floor or ceiling effects (percentage of participants that achieved the lowest or highest possible score). Reliability was assessed as the percentage of scores with a SE ≤ 4.5. Construct validity was evaluated by comparing the PROMIS measures with the legacy instruments. Mean PROMIS T-scores were calculated and compared with the Dutch general population. Results: In total, 77 boys with hemophilia participated. Reliability was good for almost all PROMIS measures and legacy instruments. The total number of completed items varied from 49 to 90 for the PROMIS pediatric measures, while the legacy instruments contained 117 to 130 items. Floor and ceiling effects were observed in both the PROMIS measures (0-39.5%) and legacy instruments (0-66.7%), but were higher for the legacy instruments. Conclusions: The PROMIS pediatric measures are feasible to use for boys with hemophilia. With the use of the PROMIS measures in clinical care and research, a step toward worldwide standardization of PROM administration can be taken.</p

    Energy levels of Bk249 populated in the α decay of 99253Es and β- Decay of 96249Cm

    Get PDF
    The level structure of Bk249 has been investigated by measuring the γ-ray spectra of an extremely pure Es253 sample obtained by milking this nuclide from Cf253 source material produced in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Additional information on the Bk249 levels was obtained from the β - decay study of Cm249, produced by neutron irradiation of Cm248. Using the results of the present study together with the data from previous Cm248(α,t) and Cm248(He3,d) reactions, the following single-particle states have been identified in Bk249: 7/2+[633], 0.0 keV; 3/2-[521], 8.78 keV; 1/2+[400], 377.55 keV; 5/2+[642], 389.17 keV; 1/2-[530], 569.20 keV; 1/2-[521], 643.0 keV; 5/2-[523], 672.9 keV; and 9/2+[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7, and 1223.0 keV with tentative assignments of {7/2+ [633] 1-}9/2-, {7/2+ [633] 0-}7/2-, {7/2+ [633] 1-}5/2-, and {7/2+ [633] 0+}7/2+, respectively. A band at 899.9 keV was observed in γ-γ coincidence measurements and given a tentative spin assignment of 3/2. It is possibly associated with a 2- phonon coupled to the ground state, with configuration {7/2+ [633] 2-}3/2-. Three levels at 624.3, 703.5, and 769.1 keV were assigned spins of 5/2, 7/2, and 9/2, respectively. These could be the members of the 3/2+ [651] band, expected in this energy region

    Molecules with ALMA at planet-forming scales (MAPS). IV. Emission surfaces and vertical distribution of molecules

    Get PDF
    The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a unique opportunity to study the vertical distribution of gas, chemistry, and temperature in the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. By using the asymmetry of molecular line emission relative to the disk major axis, we infer the emission height (z) above the midplane as a function of radius (r). Using this method, we measure emitting surfaces for a suite of CO isotopologues, HCN, and C2H. We find that 12CO emission traces the most elevated regions with z/r > 0.3, while emission from the less abundant 13CO and C18O probes deeper into the disk at altitudes of z/r ≲ 0.2. C2H and HCN have lower opacities and signal-to-noise ratios, making surface fitting more difficult, and could only be reliably constrained in AS 209, HD 163296, and MWC 480, with z/r ≲ 0.1, i.e., relatively close to the planet-forming midplanes. We determine peak brightness temperatures of the optically thick CO isotopologues and use these to trace 2D disk temperature structures. Several CO temperature profiles and emission surfaces show dips in temperature or vertical height, some of which are associated with gaps and rings in line and/or continuum emission. These substructures may be due to local changes in CO column density, gas surface density, or gas temperatures, and detailed thermochemical models are necessary to better constrain their origins and relate the chemical compositions of elevated disk layers with those of planet-forming material in disk midplanes. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Influence of Conversion and Anastomotic Leakage on Survival in Rectal Cancer Surgery; Retrospective Cross-sectional Study

    Get PDF

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95 uncertainty interval 2·9�3·0) for men and 3·5 years (3·4�3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78�0·92) and 1·2 years (1·1�1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens
    corecore