224 research outputs found

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Olive Oil effectively mitigates ovariectomy-induced osteoporosis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis, a reduction in bone mineral density, represents the most common metabolic bone disease. Postmenopausal women are particularly susceptible to osteoporosis when their production of estrogen declines. For these women, fracture is a leading cause of morbidity and mortality. This study was conducted to evaluate the protective effects of olive oil supplementation against osteoporosis in ovariectomized (OVX) rats.</p> <p>Methods</p> <p>We studied adult female Wistar rats aged 12-14 months, divided into three groups: sham-operated control (SHAM), ovariectomized (OVX), and ovariectomized rats supplemented with extravirgin olive oil (Olive-OVX) orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after. At the end of the experiment, blood samples were collected. Plasma levels of calcium, phosphorus, alkaline phosphatase (ALP), malondialdehyde (MDA), and nitrates were assayed. Specimens from both the tibia and the liver were processed for light microscopic examination. Histomorphometric analysis of the tibia was also performed.</p> <p>Results</p> <p>The OVX-rats showed a significant decrease in plasma calcium levels, and a significant increase in plasma ALP, MDA, and nitrates levels. These changes were attenuated by olive oil supplementation in the Olive-OVX rats. Light microscopic examination of the tibia of the OVX rats revealed a significant decrease in the cortical bone thickness (CBT) and the trabecular bone thickness (TBT). In addition, there was a significant increase in the osteoclast number denoting bone resorption. In the Olive-OVX rats these parameters were markedly improved as compared to the OVX group. Examination of the liver specimens revealed mononuclear cellular infiltration in the portal areas in the OVX-rats which was not detected in the Olive-OVX rats.</p> <p>Conclusions</p> <p>Olive oil effectively mitigated ovariectomy-induced osteoporosis in rats, and is a promising candidate for the treatment of postmenopausal osteoporosis.</p

    Biodiversity in urban gardens: assessing the accuracy of citizen science data on garden hedgehogs

    Get PDF
    Urban gardens provide a rich habitat for species that are declining in rural areas. However, collecting data in gardens can be logistically-challenging, time-consuming and intrusive to residents. This study examines the potential of citizen scientists to record hedgehog sightings and collect habitat data within their own gardens using an online questionnaire. Focussing on a charismatic species meant that the number of responses was high (516 responses were obtained in 6 weeks, with a ~ 50:50% split between gardens with and without hedgehog sightings). While many factors commonly thought to influence hedgehog presence (e.g. compost heaps) were present in many hedgehog-frequented gardens, they were not discriminatory as they were also found in gardens where hedgehogs were not seen. Respondents were most likely to have seen hedgehogs in their garden if they had also seen hedgehogs elsewhere in their neighbourhood. However, primary fieldwork using hedgehog ‘footprint tunnels’ showed that hedgehogs were found to be just as prevalent in gardens in which hedgehogs had previously been reported as gardens where they had not been reported. Combining these results indicates that hedgehogs may be more common in urban and semi-urban gardens than previously believed, and that casual volunteer records of hedgehogs may be influenced more by the observer than by habitat preferences of the animal. When verified, volunteer records can provide useful information, but care is needed in interpreting these data

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia

    Get PDF
    We acquired diffusion tensor and structural MRI images on 103 patients with schizophrenia and 41 age-matched normal controls. The vector data was used to trace tracts from a region of interest in the anterior limb of the internal capsule to the prefrontal cortex. Patients with schizophrenia had tract paths that were significantly shorter in length from the center of internal capsule to prefrontal white matter. These tracts, the anterior thalamic radiations, are important in frontal-striatal-thalamic pathways. These results are consistent with findings of smaller size of the anterior limb of the internal capsule in patients with schizophrenia, diffusion tensor anisotropy decreases in frontal white matter in schizophrenia and hypothesized disruption of the frontal-striatal-thalamic pathway system

    Cytogenetic and Molecular Predictors of Outcome in Acute Lymphocytic Leukemia: Recent Developments

    Get PDF
    During the last decade a tremendous technologic progress based on genome-wide profiling of genetic aberrations, structural DNA alterations, and sequence variations has allowed a better understanding of the molecular basis of pediatric and adult B/T- acute lymphoblastic leukemia (ALL), contributing to a better recognition of the biological heterogeneity of ALL and to a more precise definition of risk factors. Importantly, these advances identified novel potential targets for therapeutic intervention. This review will be focused on the cytogenetic/molecular advances in pediatric and adult ALL based on recently published articles

    Trabecular Meshwork Gene Expression after Selective Laser Trabeculoplasty

    Get PDF
    BACKGROUND: Trabecular meshwork and Schlemm's canal are the tissues appointed to modulate the aqueous humour outflow from the anterior chamber. The impairment of their functions drives to an intraocular pressure increase. The selective laser trabeculoplasty is a laser therapy of the trabecular meshwork able to decrease intraocular pressure. The exact response mechanism to this treatment has not been clearly delineated yet. The herein presented study is aimed at studying the gene expression changes induced in trabecular meshwork cells by selective laser trabeculoplasty (SLT) in order to better understand the mechanisms subtending its efficacy. METHODOLOGY/PRINCIPAL FINDINGS: Primary human trabecular meshwork cells cultured in fibroblast medium underwent selective laser trabeculoplasty treatment. RNA was extracted from a pool of cells 30 minutes after treatment while the remaining cells were further cultured and RNA was extracted respectively 2 and 6 hours after treatment. Control cells stored in incubator in absence of SLT treatment were used as reference samples. Gene expression was evaluated by hybridization on miRNA-microarray and laser scanner analysis. Scanning electron microscopic examination was performed on 2 Trabecular meshwork samples after SLT at 4(th) and 6(th) hour from treatment. On the whole, selective laser trabeculoplasty modulates in trabecular meshwork the expression of genes involved in cell motility, intercellular connections, extracellular matrix production, protein repair, DNA repair, membrane repair, reactive oxygen species production, glutamate toxicity, antioxidant activities, and inflammation. CONCLUSIONS/SIGNIFICANCE: SLT did not induce any phenotypic alteration in TM samples. TM is a complex tissue possessing a great variety of function pivotal for the active regulation of aqueous humour outflow from the anterior chamber. SLT is able to modulate these functions at the postgenomic molecular level without inducing damage either at molecular or phenotypic levels
    corecore