302 research outputs found

    Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers

    Get PDF
    BACKGROUND: Ovarian germ cell tumours (OGCTs) typically arise in young females and their pathogenesis remains poorly understood. We investigated the origin of malignant OGCTs and underlying molecular events in the development of the various histological subtypes of this neoplasia. RESULTS: We examined in situ expression of stem cell-related (NANOG, OCT-3/4, KIT, AP-2γ) and germ cell-specific proteins (MAGE-A4, NY-ESO-1, TSPY) using a tissue microarray consisting of 60 OGCT tissue samples and eight ovarian small cell carcinoma samples. Developmental pattern of expression of NANOG, TSPY, NY-ESO-1 and MAGE-A4 was determined in foetal ovaries (gestational weeks 13–40). The molecular genetic part of our study included search for the presence of Y-chromosome material by fluorescence in situ hybridisation (FISH), and mutational analysis of the KIT oncogene (exon 17, codon 816), which is often mutated in testicular GCTs, in a subset of tumour DNA samples. We detected a high expression of transcription factors related to the embryonic stem cell-like pluripotency and undifferentiated state in OGCTs, but not in small cell carcinomas, supporting the view that the latter do not arise from a germ cell progenitor. Bilateral OGCTs expressed more stem cell markers than unilateral cases. However, KIT was mutated in 5/13 unilateral dysgerminomas, whereas all bilateral dysgerminomas (n = 4) and all other histological types (n = 22) showed a wild type sequence. Furthermore, tissue from five phenotypic female patients harbouring combined dysgerminoma/gonadoblastoma expressed TSPY and contained Y-chromosome material as confirmed by FISH. CONCLUSION: This study provides new data supporting two distinct but overlapping pathways in OGCT development; one involving spontaneous KIT mutation(s) leading to increased survival and proliferation of undifferentiated oogonia, the other related to presence of Y chromosome material and ensuing gonadal dysgenesis in phenotypic females

    Severe Congenital Heart Defects and Cerebral Palsy

    Get PDF
    Objective: To report the prevalence of cerebral palsy (CP) in children with severe congenital heart defects (sCHD) and the outcome/severity of the CP. Methods: Population-based, data linkage study between CP and congenital anomaly registers in Europe and Australia. The EUROCAT definition of severe CHD (sCHD) was used. Linked data from 4 regions in Europe and 2 in Australia were included. All children born in the regions from 1991 through 2009 diagnosed with CP and/or sCHD were included. Linkage was completed locally. Deidentified linked data were pooled for analyses. Results:The study sample included 4989 children with CP and 3684 children with sCHD. The total number of livebirths in the population was 1 734 612. The prevalence of CP was 2.9 per 1000 births (95% CI, 2.8-3.0) and the prevalence of sCHD was 2.1 per 1000 births (95% CI, 2.1-2.2). Of children with sCHD, 1.5% (n = 57) had a diagnosis of CP, of which 35 (61%) children had prenatally or perinatally acquired CP (resulting from a brain injury at £28 days of life) and 22 (39%) children had a postneonatal cause (a brain injury between 28 days and 2 years). Children with CP and sCHD more often had unilateral spastic CP and more intellectual impairments than children with CP without congenital anomalies.Conclusions: In high-income countries, the proportion of children with CP is much higher in children with sCHD than in the background population. The severity of disease in children with CP and sCHD is milder compared with children with CP without congenital anomaliesFunding support received for the overarching Comprehensive CA-CP Study: the Cerebral Palsy Alliance Research Foundation (The Comprehensive CA-CP Study PG1215 and PG2816 and salary support from Cerebral Palsy Alliance Research Foundation (S.G., S.M., H.S.S., N.B.).info:eu-repo/semantics/publishedVersio

    Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Get PDF
    <b>Background</b>: Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM) has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM.<BR/> <b>Methods</b>: This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs) on the Sertoli cells (SCARKO), mice with a ubiquitous loss of androgen ARs (ARKO), hypogonadal (hpg) mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO) and ARKO (hpg.ARKO) mice.<BR/> <b>Results</b>: Microscopic TM was seen in 94% of hpg.ARKO mice (n=16) and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n=11) of hpg testes (mean 2 +/- 0.5 per testis) and 30% (n=10) of hpg.SCARKO testes (mean 8 +/- 6 per testis). No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice.<BR/> <b>Conclusions</b>: We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression

    Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells

    Get PDF
    Transcripts of NANOG and OCT4 have been recently identified in human t(4;11) leukemia and in a model system expressing both t(4;11) fusion proteins. Moreover, downstream target genes of NANOG/OCT4/SOX2 were shown to be transcriptionally activated. However, the NANOG1 gene belongs to a gene family, including a gene tandem duplication (named NANOG2 or NANOGP1) and several pseudogenes (NANOGP2-P11). Thus, it was unclear which of the NANOG family members were transcribed in t(4;11) leukemia cells. 5′-RACE experiments revealed novel 5′-exons of NANOG1 and NANOG2, which could give rise to the expression of two different NANOG1 and three different NANOG2 protein variants. Moreover, a novel PCR-based method was established that allows distinguishing between transcripts deriving from NANOG1, NANOG2 and all other NANOG pseudogenes (P2–P11). By applying this method, we were able to demonstrate that human hematopoietic stem cells and different leukemic cells transcribe NANOG2. Furthermore, we functionally tested NANOG1 and NANOG2 protein variants by recombinant expression in 293 cells. These studies revealed that NANOG1 and NANOG2 protein variants are functionally equivalent and activate a regulatory circuit that activates specific stem cell genes. Therefore, we pose the hypothesis that the transcriptional activation of NANOG2 represents a ‘gain-of-stem cell function’ in acute leukemia

    Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours

    Get PDF
    The carcinoma in situ (CIS) cell is the common precursor of nearly all testicular germ cell tumours (TGCT). In a previous study, we examined the gene expression profile of CIS cells and found many features common to embryonic stem cells indicating that initiation of neoplastic transformation into CIS occurs early during foetal life. Progression into an overt tumour, however, typically first happens after puberty, where CIS cells transform into either a seminoma (SEM) or a nonseminoma (N-SEM). Here, we have compared the genome-wide gene expression of CIS cells to that of testicular SEM and a sample containing a mixture of N-SEM components, and analyse the data together with the previously published data on CIS. Genes showing expression in the SEM or N-SEM were selected, in order to identify gene expression markers associated with the progression of CIS cells. The identified markers were verified by reverse transcriptase–polymerase chain reaction and in situ hybridisation in a range of different TGCT samples. Verification showed some interpatient variation, but combined analysis of a range of the identified markers may discriminate TGCT samples as SEMs or N-SEMs. Of particular interest, we found that both DNMT3B (DNA (cytosine-5-)-methyltransferase 3 beta) and DNMT3L (DNA (cytosine-5-)-methyltransferase 3 like) were overexpressed in the N-SEMs, indicating the epigenetic differences between N-SEMs and classical SEM

    Novel variant of the androgen receptor gene in a patient with complete androgen insensitivity syndrome and polyorchidism

    Get PDF
    Publisher Copyright: © 2007 - 2019 Frontiers Media S.A. All Rights Reserved.Introduction: Complete androgen insensitivity (CAIS) in 65–95% cases is caused by pathogenic allelic variants (mutations) in the gene encoding androgen receptor (AR gene) and is characterized by female phenotype development with a male karyotype (46, XY). Patients are usually diagnosed during puberty and undergo gonadectomy due to increased testicular germ cell tumor risk. Only a few outcomes have been reported in older individuals with postponed gonadectomy. Case presentation: A 48-year-old CAIS patient presented with polyorchidism (four testes) without gonadal malignancies. Genetic testing identified a novel allelic variant in the AR gene [c.2141T>G (p.Phe805Cys)] causing the clinical symptoms. Conclusion: We have described a unique patient with CAIS and polyorchidism without malignancies in her late 40's bearing a novel likely pathogenic variant in the AR gene.publishersversionPeer reviewe

    Nodal signaling regulates germ cell development and establishment of seminiferous cords in the human fetal testis

    Get PDF
    Summary: Disruption of human fetal testis development is widely accepted to underlie testicular germ cell cancer (TGCC) origin and additional disorders within testicular dysgenesis syndrome (TDS). However, the mechanisms for the development of testicular dysgenesis in humans are unclear. We used ex vivo culture and xenograft approaches to investigate the importance of Nodal and Activin signaling in human fetal testis development. Inhibition of Nodal, and to some extent Activin, signaling disrupted seminiferous cord formation, abolished AMH expression, reduced androgen secretion, and decreased gonocyte numbers. Subsequent xenografting of testicular tissue rescued the disruptive effects on seminiferous cords and somatic cells but not germ cell effects. Stimulation of Nodal signaling increased the number of germ cells expressing pluripotency factors, and these persisted after xenografting. Our findings suggest a key role for Nodal signaling in the regulation of gonocyte differentiation and early human testis development with implications for the understanding of TGCC and TDS origin. : Jørgensen et al. determine the role of Nodal signaling in human fetal testis development using ex vivo culture and xenografting approaches. They provide insights into the involvement of Nodal signaling in seminiferous cord formation and the regulation of pluripotency factor expression in fetal gonocytes, with implications for the development of testicular cancer. Keywords: Nodal, Activin, human fetal testis, testicular germ cell cancer, testicular dysgenesis syndrome, ex vivo culture, xenografting, testicular development, gonocytes, pluripotency factor

    Deep Molecular Characterization of Milder Spinal Muscular Atrophy Patients Carrying the c.859G>C Variant in SMN2

    Get PDF
    Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype-phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype-phenotype correlations and improve prognostic outcomes

    BMP Signaling in the Human Fetal Ovary is Developmentally Regulated and Promotes Primordial Germ Cell Apoptosis

    Get PDF
    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells

    Cell cycle analysis of fetal germ cells during sex differentiation in mice

    Get PDF
    Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex-specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours
    corecore