126 research outputs found

    Colossal Spin-Phonon Anomalies and the Ferroelectric Phase Transition in the Model Multiferroic Bifeo3

    Full text link
    We report a temperature-dependent Raman and neutron scattering investigation of the multiferroic material bismuth ferrite BiFeO3 (BFO).Comment: submitted to PRL (July 2005

    Non-collinear magnetism in Al-Mn topologically disordered systems

    Full text link
    We have performed the first ab-initio calculations of a possible complex non-collinear magnetic structure in aluminium-rich Al-Mn liquids within the real-space tight-binding LMTO method. In our previous work we predicted the existence of large magnetic moments in Al-Mn liquids [A.M. Bratkovsky, A.V. Smirnov, D. N. Manh, and A. Pasturel, \prb {\bf 52}, 3056 (1995)] which has been very recently confirmed experimentally. Our present calculations show that there is a strong tendency for the moments on Mn to have a non-collinear (random) order retaining their large value of about 3~ÎĽB\mu_B. The d-electrons on Mn demonstrate a pronounced non-rigid band behaviour which cannot be reproduced within a simple Stoner picture. The origin of the magnetism in these systems is a topological disorder which drives the moments formation and frustrates their directions in the liquid phase.Comment: 10 pages, RevTex 3.0, 24kb. 3 PS figures available on request from [email protected] The work has been presented at ERC ``Electronic Structire of Solids'' (Lunteren, The Netherlands, 9-14 September 1995

    EXAFS study of lead-free relaxor ferroelectric BaTi(1-x)Zr(x)O3 at the Zr K-edge

    Full text link
    Extended X-ray absorption fine structure (EXAFS) experiments at the Zr K-edge were carried out on perovskite relaxor ferroelectrics BaTi(1-x)Zr(x)O3 (BTZ) (x = 0.25, 0.30, 0.35), and on BaZrO3 for comparison. Structural information up to 4.5 A around the Zr atoms is obtained, revealing that the local structure differs notably from the average Pm-3m cubic structure deduced from X-ray diffraction. In particular, our results show that the distance between Zr atoms and their first oxygen neighbors is independent of the Zr substitution rate x and equal to that measured in BaZrO3, while the X-ray cubic cell parameter increases linearly with x. Furthermore, we show that the Zr atoms tend to segregate in Zr-rich regions. We propose that the relaxor behavior in BTZ is linked to random elastic fields generated by this particular chemical arrangement, rather than to random electric fields as is the case in most relaxors.Comment: 13 pages, 12 figures, 4 tables. Submitted to Phys. Rev.

    Hidden magnetic frustration by quantum relaxation in anisotropic Nd-langasite

    Get PDF
    The static and dynamic magnetic properties of the Nd3_3Ga5_5SiO14_{14} compound, which appears as the first materialization of a rare-earth kagome-type lattice, were re-examined, owing to contradictory results in the previous studies. Neutron scattering, magnetization and specific heat measurements were performed and analyzed, in particular by fully taking account of the crystal electric field effects on the Nd3+^{3+} ions. One of the novel findings is that the peculiar temperature independent spin dynamics observed below 10 K expresses single-ion quantum processes. This would short-circuit the frustration induced cooperative dynamics, which would emerge only at very low temperature

    Corneal Transduction by Intra-Stromal Injection of AAV Vectors In Vivo in the Mouse and Ex Vivo in Human Explants

    Get PDF
    The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea

    Long Range Plan: Dense matter theory for heavy-ion collisions and neutron stars

    Full text link
    Since the release of the 2015 Long Range Plan in Nuclear Physics, major events have occurred that reshaped our understanding of quantum chromodynamics (QCD) and nuclear matter at large densities, in and out of equilibrium. The US nuclear community has an opportunity to capitalize on advances in astrophysical observations and nuclear experiments and engage in an interdisciplinary effort in the theory of dense baryonic matter that connects low- and high-energy nuclear physics, astrophysics, gravitational waves physics, and data scienceComment: 70 pages, 3 figures, White Paper for the Long Range Plan for Nuclear Scienc

    Optimization methods for electric power systems: An overview

    Get PDF
    Power systems optimization problems are very difficult to solve because power systems are very large, complex, geographically widely distributed and are influenced by many unexpected events. It is therefore necessary to employ most efficient optimization methods to take full advantages in simplifying the formulation and implementation of the problem. This article presents an overview of important mathematical optimization and artificial intelligence (AI) techniques used in power optimization problems. Applications of hybrid AI techniques have also been discussed in this article
    • …
    corecore