8 research outputs found

    A deep learning approach to identify and segment alpha‑smooth muscle actin stress fiber positive cells

    Get PDF
    Cardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha‑smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha‑smooth muscle actin stress fibers into 2 classes (α‑SMA SF + and α‑SMA SF‑), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid‑based hydrogels of various moduli to induce alpha‑smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization.This research was supported by the Burroughs Wellcome Fund (CASI-1015895, A.M.R) and by the National Sci- ence Foundation (NSF MRSEC DMR-1720595 A.M.R). The authors acknowledge the use of shared research facili- ties supported in part by the Texas Materials Institute, the Center for Dynamics and Control of Materials: an NSF MRSEC (DMR-1720595), and the NSF National Nanotechnology Coordinated Infrastructure (ECCS-1542159). We also acknowledge the use of shared facilities in the UT Proteomics Facility (CPRIT RP110782). Finally, we also acknowledge the Texas Advanced Computing Center for their high performance computing resources.Center for Dynamics and Control of Material

    Immunomodulatory functions of human mesenchymal stromal cells are enhanced when cultured on HEP/COL multilayers supplemented with interferon-gamma

    No full text
    Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for cell therapies due to their immunosuppressive capacity that can be enhanced in the presence of interferon-gamma (IFN-γ). In this study, multilayers of heparin (HEP) and collagen (COL) (HEP/COL) were used as a bioactive surface to enhance the immunomodulatory activity of hMSCs using soluble IFN-γ. Multilayers were formed, via layer-by-layer assembly, varying the final layer between COL and HEP and supplemented with IFN-γ in the culture medium. We evaluated the viability, adhesion, real-time growth, differentiation, and immunomodulatory activity of hMSCs on (HEP/COL) multilayers. HMSCs viability, adhesion, and growth were superior when cultured on (HEP/COL) multilayers compared to tissue culture plastic. We also confirmed that hMSCs osteogenic and adipogenic differentiation remained unaffected when cultured in (HEP/COL) multilayers in the presence of IFN-γ. We measured the immunomodulatory activity of hMSCs by measuring the level of indoleamine 2,3-dioxygenase (IDO) expression. IDO expression was higher on (HEP/COL) multilayers treated with IFN-γ. Lastly, we evaluated the suppression of peripheral blood mononuclear cell (PBMC) proliferation when co-cultured with hMSCs on (HEP/COL) multilayers with IFN-γ. hMSCs cultured in (HEP/COL) multilayers in the presence of soluble IFN-γ have a greater capacity to suppress PBMC proliferation. Altogether, (HEP/COL) multilayers with IFN-γ in culture medium provides a potent means of enhancing and sustaining immunomodulatory activity to control hMSCs immunomodulation

    CB2: a cannabinoid receptor with an identity crisis

    No full text
    CB2 was first considered to be the ‘peripheral cannabinoid receptor’. This title was bestowed based on its abundant expression in the immune system and presumed absence from the central nervous system. However, multiple recent reports question the absence of CB2 from the central nervous system. For example, it is now well accepted that CB2 is expressed in brain microglia during neuroinflammation. However, the extent of CB2 expression in neurons has remained controversial. There have been studies claiming either extreme-its complete absence to its widespread expression-as well as everything in between. This review will discuss the reported tissue distribution of CB2 with a focus on CB2 in neurons, particularly those in the central nervous system as well as the implications of that presence. As CB2 is an attractive therapeutic target for pain management and immune system modulation without overt psychoactivity, defining the extent of its presence in neurons will have a significant impact on drug discovery. Our recommendation is to encourage cautious interpretation of data that have been presented for and against CB2's presence in neurons and to encourage continued rigorous study

    Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55

    No full text
    corecore