15 research outputs found

    Managing the long term effects of covid-19 : summary of NICE, SIGN, and RCGP rapid guideline

    Get PDF
    For a proportion of people covid-19 leads to long term effects that can have a significant impact on quality of life. According to the Office for National Statistics, around one in five people testing positive for covid-19 exhibit symptoms for a period of five weeks or more.1 This presents challenges for determining best-practice standards of care. As yet, no commonly agreed clinical definition of long term covid-19 exists, nor a clear definition of treatment pathway. To assist clinicians, the National Institute for Health and Care Excellence (NICE), the Scottish Intercollegiate Guidelines Network (SIGN), and the Royal College of General Practitioners (RCGP) have developed the “COVID-19 rapid guideline: managing the long term effects of COVID-19.”2 It covers care for people with signs and symptoms that continue for more than four weeks, and which developed during or after an infection consistent with covid-19, and which are not explained by alternative diagnoses

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Post-COVID-19 assessment in a specialist clinical service: a 12-month, single-centre, prospective study in 1325 individuals

    Get PDF
    Introduction: Post-COVID-19 complications require simultaneous characterisation and management to plan policy and health system responses. We describe the 12-month experience of the first UK dedicated post-COVID-19 clinical service to include hospitalised and non-hospitalised patients. Methods: In a single-centre, observational analysis, we report the demographics, symptoms, comorbidities, investigations, treatments, functional recovery, specialist referral and rehabilitation of 1325 individuals assessed at the University College London Hospitals post-COVID-19 service between April 2020 and April 2021, comparing by referral route: posthospitalised (PH), non-hospitalised (NH) and post emergency department (PED). Symptoms associated with poor recovery or inability to return to work full time were assessed using multivariable logistic regression. Results: 1325 individuals were assessed (PH: 547, 41.3%; PED: 212, 16%; NH: 566, 42.7%). Compared with the PH and PED groups, the NH group were younger (median 44.6 (35.6–52.8) years vs 58.3 (47.0–67.7) years and 48.5 (39.4–55.7) years), more likely to be female (68.2%, 43.0% and 59.9%), less likely to be of ethnic minority (30.9%, 52.7% and 41.0%) or seen later after symptom onset (median (IQR): 194 (118–298) days, 69 (51–111) days and 76 (55–128) days; all p<0.0001). All groups had similar rates of onward specialist referral (NH 18.7%, PH 16.1% and PED 18.9%, p=0.452) and were more likely to require support for breathlessness (23.7%, 5.5% and 15.1%, p<0.001) and fatigue (17.8%, 4.8% and 8.0%, p<0.001). Hospitalised patients had higher rates of pulmonary emboli, persistent lung interstitial abnormalities and other organ impairment. 716 (54.0%) individuals reported <75% optimal health (median 70%, IQR 55%–85%). Less than half of employed individuals could return to work full time at first assessment. Conclusion: Post-COVID-19 symptoms were significant in PH and NH patients, with significant ongoing healthcare needs and utilisation. Trials of interventions and patient-centred pathways for diagnostic and treatment approaches are urgently required

    Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID)

    Get PDF
    Introduction The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). Methods and analysis The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. Ethics and dissemination All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. Conclusion This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Residual Lung Abnormalities Following COVID-19 Hospitalization:Interim Analysis of the UKILD Post-COVID Study

    Get PDF
    RationaleShared symptoms and genetic architecture between COVID-19 and lung fibrosis suggests SARS-CoV-2 infection may lead to progressive lung damage.ObjectivesThe UKILD Post-COVID study interim analysis was planned to estimate the prevalence of residual lung abnormalities in people hospitalized with COVID-19 based on risk strata.MethodsThe Post-HOSPitalisation COVID Study (PHOSP-COVID) was used for capture of routine and research follow-up within 240 days from discharge. Thoracic CTs linked by PHOSP-COVID identifiers were scored for percentage of residual lung abnormalities (ground glass opacities and reticulations). Risk factors in linked CT were estimated with Bayesian binomial regression and risk strata were generated. Numbers within strata were used to estimate post-hospitalization prevalence using Bayesian binomial distributions. Sensitivity analysis was restricted to participants with protocol driven research follow-up.Measurements and main resultsThe interim cohort comprised 3700 people. Of 209 subjects with linked CTs (median 119 days, interquartile range 83-155), 166 people (79.4%) had >10% involvement of residual lung abnormalities. Risk factors included abnormal chest X-ray (RR 1·21 95%CrI 1·05; 1·40), percent predicted DLcoConclusionsResidual lung abnormalities were estimated in up to 11% of people discharged following COVID-19 related hospitalization. Health services should monitor at-risk individuals to elucidate long-term functional implications. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/)

    8th IAS Conference on HIV Pathogenesis, Treatment and Prevention (IAS 2015).

    No full text

    Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: A multi-ethnic meta-analysis of 45,891 individuals

    Get PDF
    Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8- 1.2 ×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL- cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance
    corecore