31 research outputs found

    Efficient Interpretation of Tandem Mass Tags in Top-Down Proteomics

    Get PDF
    Mass spectrometry is the major analytical tool for the identification and quantification of proteins in biological samples. In so-called top-down proteomics, separation and mass spectrometric analysis is performed at the level of intact proteins, without preparatory digestion steps. It has been shown that the tandem mass tag (TMT) labeling technology, which is often used for quantification based on digested proteins (bottom-up studies), can be applied in top-down proteomics as well. This, however, leads to a complex interpretation problem, where we need to annotate measured peaks with their respective generating protein, the number of charges, and the a priori unknown number of TMT-groups attached to this protein. In this work, we give an algorithm for the efficient enumeration of all valid annotations that fulfill available experimental constraints. Applying the algorithm to real-world data, we show that the annotation problem can indeed be efficiently solved. However, our experiments also demonstrate that reliable annotation in complex mixtures requires at least partial sequence information and high mass accuracy and resolution to go beyond the proof-of-concept stage

    Handreichung zur Durchführung von KMK-Fremdsprachenzertifikatsprüfungen in Thüringen

    Get PDF

    BALL - biochemical algorithms library 1.3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Biochemical Algorithms Library (BALL) is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements.</p> <p>Results</p> <p>Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics.</p> <p>Conclusions</p> <p>BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at <url>http://www.ball-project.org</url>. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.</p

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Get PDF
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The Nurses’ Health Studies would like to thank the participants and staff of the Nurses' Health Study and Nurses' Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Funding of the constituent studies was provided by the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes of Health Research (MOP-86727); Cancer Australia; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124); the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki University Central Hospital Research Fund; Helse Vest; the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education (4 PO5C 028 14, 2 PO5A 068 27); the Roswell Park Cancer Institute Alliance Foundation; the US National Cancer Institute (K07-CA095666, K07-CA80668, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC67001, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P30-CA072720, P30-CA15083, P30-CA008748, P50-CA159981, P50-CA105009, P50-CA136393, R01-CA149429, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063678, R01-CA063682, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-CA095023, R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R03-CA113148, R03-CA115195, U01-CA069417, U01-CA071966, UM1-CA186107, UM1-CA176726 and Intramural research funds); the NIH/National Center for Research Resources/General Clinical Research Center (MO1-RR000056); the US Army Medical Research and Material Command (DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-07-0449, W81XWH-10-1-02802); the US Public Health Service (PSA-042205); the National Health and Medical Research Council of Australia (199600 and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01GB 9401); the State of Baden-Wurttemberg through Medical Faculty of the University of Ulm (P.685); the German Cancer Research Center; the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Oak Foundation; Eve Appeal; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital ‘Womens Health Theme’ and the Royal Marsden Hospital; and WorkSafeBC 14. Investigator-specific funding: G.C.P receives scholarship support from the University of Queensland and QIMR Berghofer. Y.L. was supported by the NHMRC Early Career Fellowship. G.C.T. is supported by the National Health and Medical Research Council. S.M. was supported by an ARC Future Fellowship

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    Get PDF
    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.Other Research Uni

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Human SAP18 mediates assembly of a splicing regulatory multiprotein complex via its ubiquitin-like fold

    No full text
    RNPS1, Acinus, and SAP18 form the apoptosis- and splicing-associated protein (ASAP) complex, which is also part of the exon junction complex. Whereas RNPS1 was originally identified as a general activator of mRNA processing, all three proteins have been found within functional spliceosomes. Both RNPS1 and Acinus contain typical motifs of splicing regulatory proteins including arginine/serine-rich domains. Due to the absence of such structural features, however, a function of SAP18 in splicing regulation is completely unknown. Here we have investigated splicing regulatory activities of the ASAP components. Whereas a full-length Acinus isoform displayed only limited splicing regulatory activity, both RNPS1 and, surprisingly, SAP18 strongly modulated splicing regulation. Detailed mutational analysis and three-dimensional modeling data revealed that the ubiquitin-like fold of SAP18 was required for efficient splicing regulatory activity. Coimmunoprecipitation and immunofluorescence experiments demonstrated that SAP18 assembles a nuclear speckle-localized splicing regulatory multiprotein complex including RNPS1 and Acinus via its ubiquitin-like fold. Our results therefore suggest a novel function of SAP18 in splicing regulation
    corecore