317 research outputs found

    Grandstanding and Venture Capital Firms in Newly Established IPO Markets

    Get PDF
    The grandstanding theory posits that young venture capital firms (VCs) will seek to build their reputations by taking ventures public early. In this study, we examine this theory in the Japanese IPO market. With the introduction of MOTHERS and NASDAQ Japan in 1999 and 2000, respectively, with the explicit intent of catering to smaller and younger companies, we are able to examine the influence of these new markets on grandstanding and the IPO process. We find that young lead VC-backed ventures go public at a younger age than mature lead VC-backed ventures and that young lead VC-backed ventures are more underpriced. However, we do not find that young lead VCs have relatively lower equity stakes at IPO. This latter finding is most likely a result of the introduction of the new markets

    Top-and-side dual-view microfluidic device with embedded prism

    Get PDF
    A polydimethylsiloxane microfluidic device enabling dual-view visualization is proposed and demonstrated. A prism with a 2 mm square base was embedded beside a 300 μm-wide microchannel. In addition to ordinary visualization from the top of the device, the microchannel could be viewed from the side, and its optical path was reflected to the top by the prism. The top and side dual visualization in a single field of view was then realized with a single objective lens. The shifts in the focal point in the top and side directions were modeled, and a compensation method utilizing a flat sheet was used. After simultaneous bright-field and dark-field visualization was attained, dual-view fluorescence imaging of the fluorescent solution and cells was realized

    The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice

    Get PDF
    AbstractThe adaxial–abaxial axis in leaf primordia is thought to be established first and is necessary for the expansion of the leaf lamina along the mediolateral axis. To understand axis information in leaf development, we isolated the adaxialized leaf1 (adl1) mutant in rice, which forms abaxially rolled leaves. adl1 leaves are covered with bulliform-like cells, which are normally distributed only on the adaxial surface. An adl1 double mutant with the adaxially snowy leaf mutant, which has albino cells that specifically appear in the abaxial mesophyll tissue, indicated that adl1 leaves show adaxialization in both epidermal and mesophyll tissues. The expression of HD-ZIPIII genes in adl1 mutant increased in mature leaves, but not in the young primordia or the SAM. This indicated that ADL1 may not be directly involved in determining initial leaf polarity, but rather is associated with the maintenance of axis information. ADL1 encodes a plant-specific calpain-like cysteine proteinase orthologous to maize DEFECTIVE KERNEL1. Furthermore, we identified intermediate and strong alleles of the adl1 mutant that generate shootless embryos and globular-arrested embryos with aleurone layer loss, respectively. We propose that ADL1 plays an important role in pattern formation of the leaf and embryo by promoting proper epidermal development

    Construction of Eco-system for NTBFs to Thrive, Grow and Agglomerate (Japanese)

    Get PDF
    Boston, Massachusetts in the U.S. was able to rejuvenate its economy after WWП through the thrift, growth and agglomeration of MIT-born New Technology-based Firms (NTBFs), which have been categorized as the origin of new venture firms. This paper will explain why some areas like Boston, Silicon Valley, and Austin TX in the U.S. and Cambridge in the UK, were able to construct successful Eco-systems for NTBFs to thrive, grow and agglomerate, while others were unsuccessful, by applying the Eco-system Construction Model deducted from previous studies. Based on the research findings of this paper, we also outline our recommendations for a revision of the U.S. innovation model by clarifying its advantages and disadvantages. The U.S. model was introduced in Japan at the end of the 1990s and prompted a number of new innovation policy projects including the '1000 University Start-up Venture Scheme', the 'Industrial Cluster Project' and the 'Knowledge Cluster Initiative.'

    Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network

    Get PDF
    The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, yet the components and structure of the STMgene regulatory network (GRN) are largely unknown. Here, we show that transcriptional regulators are overrepresented among STM-regulated genes and, using these as GRN components in Bayesian network analysis, we infer STM GRN associations and reveal regulatory relationships between STM and factors involved in multiple aspects of SAM function. These include hormone regulation, TCP-mediated control of cell differentiation, AIL/PLT-mediated regulation of pluripotency and phyllotaxis, and specification of meristem-organ boundary zones via CUC1. We demonstrate a direct positive transcriptional feedback loop between STM and CUC1, despite their distinct expression patterns in the meristem and organ boundary, respectively. Our further finding that STM activates expression of the CUC1-targeting microRNA miR164c combined with mathematical modelling provides a potential solution for this apparent contradiction, demonstrating that these proposed regulatory interactions coupled with STM mobility could be sufficient to provide a mechanism for CUC1 localisation at the meristem-organ boundary. Our findings highlight the central role for the STM GRN in coordinating SAM functions

    Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development

    Full text link
    [EN] The NOOT-BOP-COCH-LIKE (NBCL) genes are orthologs of Arabidopsis thaliana BLADE-ON-PETIOLE1/2. The NBCLs are developmental regulators essential for plant shaping, mainly through the regulation of organ boundaries, the promotion of lateral organ differentiation and the acquisition of organ identity. In addition to their roles in leaf, stipule and flower development, NBCLs are required for maintaining the identity of indeterminate nitrogen-fixing nodules with persistent meristems in legumes. In legumes forming determinate nodules, without persistent meristem, the roles of NBCL genes are not known. We thus investigated the role of Lotus japonicus NOOT-BOP-COCH-LIKE1 (LjNBCL1) in determinate nodule identity and studied its functions in aerial organ development using LORE1 insertional mutants and RNA interference-mediated silencing approaches. In Lotus, LjNBCL1 is involved in leaf patterning and participates in the regulation of axillary outgrowth. Wild-type Lotus leaves are composed of five leaflets and possess a pair of nectaries at the leaf axil. Legumes such as pea and Medicago have a pair of stipules, rather than nectaries, at the base of their leaves. In Ljnbcl1, nectary development is abolished, demonstrating that nectaries and stipules share a common evolutionary origin. In addition, ectopic roots arising from nodule vascular meristems and reorganization of the nodule vascular bundle vessels were observed on Ljnbcl1 nodules. This demonstrates that NBCL functions are conserved in both indeterminate and determinate nodules through the maintenance of nodule vascular bundle identity. In contrast to its role in floral patterning described in other plants, LjNBCL1 appears essential for the development of both secondary inflorescence meristem and floral meristem.This work was supported by the CNRS and by the grants ANR-14-CE19-0003 (NOOT) from the Agence National de la Recherche (ANR) to PR. This work has benefited from the facilities and expertise of the Servicio de Microscopia Electronica Universitat Politecnica de Valencia (Spain, http://www.upv.es/entidades/SME/) and of the IMAGIF Cell Biology Unit of the Gif campus (France, www.imagif.cnrs.fr) which is supported by the Conseil General de l'Essonne. The authors thank Dr Mathias Brault from the Institute of Plant Sciences Paris-Saclay (France) for providing the pFRN: RNAi plasmid, A. rhizogenes ARqua1 strain and control GUS:RNAi construction, and Dr Simona Radutoiu from the University of Aarhus (Denmark), for providing the Na-Borate/TRIZOL RNA extraction protocol. We are grateful to Dr Cristina Ferrandiz from the Instituto de Biologia Molecular y Celular de Plantas (Spain) for help in interpreting the identity of the meristems in the SEM pictures and Professor Frederique Guinel from the University of Wilfrid Laurier (Canada) for help in interpreting the identity of L. japonicus nodule vascular tissues. We thank Dr Julie Hofer from the University of Auckland (New Zealand), for manuscript revision and English language polishing.Magne, K.; George, J.; Berbel Tornero, A.; Broquet, B.; Madueño Albi, F.; Andersen, S.; Ratet, P. (2018). Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. The Plant Journal. 94(5):880-894. https://doi.org/10.1111/tpj.13905S880894945Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011Aida, M., & Tasaka, M. (2006). Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex. Plant Molecular Biology, 60(6), 915-928. doi:10.1007/s11103-005-2760-7Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841AKASAKA, Y. (1998). Morphological Alterations and Root Nodule Formation inAgrobacterium rhizogenes-mediated Transgenic Hairy Roots of Peanut (Arachis hypogaeaL.). Annals of Botany, 81(2), 355-362. doi:10.1006/anbo.1997.0566Benlloch, R., Berbel, A., Ali, L., Gohari, G., Millán, T., & Madueño, F. (2015). Genetic control of inflorescence architecture in legumes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00543Berbel, A., Ferrándiz, C., Hecht, V., Dalmais, M., Lund, O. S., Sussmilch, F. C., … Madueño, F. (2012). VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications, 3(1). doi:10.1038/ncomms1801Blázquez, M. A., Ferrándiz, C., Madueño, F., & Parcy, F. (2006). How Floral Meristems are Built. Plant Molecular Biology, 60(6), 855-870. doi:10.1007/s11103-006-0013-zBrown, S. M., Oparka, K. J., Sprent, J. I., & Walsh, K. B. (1995). Symplastic transport in soybean root nodules. Soil Biology and Biochemistry, 27(4-5), 387-399. doi:10.1016/0038-0717(95)98609-rChen, Y., Chen, W., Li, X., Jiang, H., Wu, P., Xia, K., … Wu, G. (2013). Knockdown of LjIPT3 influences nodule development in Lotus japonicus. Plant and Cell Physiology, 55(1), 183-193. doi:10.1093/pcp/pct171Cho, E., & Zambryski, P. C. (2011). ORGAN BOUNDARY1defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proceedings of the National Academy of Sciences, 108(5), 2154-2159. doi:10.1073/pnas.1018542108Couzigou, J.-M., & Ratet, P. (2015). NOOT-Dependent Control of Nodule Identity: Nodule Homeosis and Merirostem Perturbation. Biological Nitrogen Fixation, 487-498. doi:10.1002/9781119053095.ch49Couzigou, J.-M., Zhukov, V., Mondy, S., Abu el Heba, G., Cosson, V., Ellis, T. H. N., … Ratet, P. (2012). NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes. The Plant Cell, 24(11), 4498-4510. doi:10.1105/tpc.112.103747Couzigou, J.-M., Magne, K., Mondy, S., Cosson, V., Clements, J., & Ratet, P. (2015). The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. New Phytologist, 209(1), 228-240. doi:10.1111/nph.13634Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Dong, Z., Zhao, Z., Liu, C., Luo, J., Yang, J., Huang, W., … Luo, D. (2005). Floral Patterning in Lotus japonicus. Plant Physiology, 137(4), 1272-1282. doi:10.1104/pp.104.054288Ehrhardt, D., Atkinson, E., & Long. (1992). Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science, 256(5059), 998-1000. doi:10.1126/science.10744524Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., … Luo, D. (2006). Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences, 103(13), 4970-4975. doi:10.1073/pnas.0600681103Ferguson, B. J., & Reid, J. B. (2005). Cochleata: Getting to the Root of Legume Nodules. Plant and Cell Physiology, 46(9), 1583-1589. doi:10.1093/pcp/pci171Ferraioli, S., Tatè, R., Rogato, A., Chiurazzi, M., & Patriarca, E. J. (2004). Development of Ectopic Roots from Abortive Nodule Primordia. Molecular Plant-Microbe Interactions®, 17(10), 1043-1050. doi:10.1094/mpmi.2004.17.10.1043Franssen, H. J., Xiao, T. T., Kulikova, O., Wan, X., Bisseling, T., Scheres, B., & Heidstra, R. (2015). Root developmental programs shape the Medicago truncatula nodule meristem. Development, 142(17), 2941-2950. doi:10.1242/dev.120774Gonzalez-Rizzo, S., Crespi, M., & Frugier, F. (2006). The Medicago truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium meliloti. The Plant Cell, 18(10), 2680-2693. doi:10.1105/tpc.106.043778Gourion, B., Sulser, S., Frunzke, J., Francez-Charlot, A., Stiefel, P., Pessi, G., … Fischer, H.-M. (2009). The PhyR-σEcfGsignalling cascade is involved in stress response and symbiotic efficiency inBradyrhizobium japonicum. Molecular Microbiology, 73(2), 291-305. doi:10.1111/j.1365-2958.2009.06769.xGourlay, C. W., Hofer, J. M. I., & Ellis, T. H. N. (2000). Pea Compound Leaf Architecture Is Regulated by Interactions among the Genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS. The Plant Cell, 12(8), 1279-1294. doi:10.1105/tpc.12.8.1279Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M. K., & Bonfante, P. (2009). Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist, 182(1), 200-212. doi:10.1111/j.1469-8137.2008.02725.xGuinel, F. C. (2009). Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types. Botany, 87(12), 1117-1138. doi:10.1139/b09-074Ha, C. M. (2003). The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development, 130(1), 161-172. doi:10.1242/dev.00196Ha, C. M., Jun, J. H., Nam, H. G., & Fletcher, J. C. (2004). BLADE-ON-PETIOLE1 Encodes a BTB/POZ Domain Protein Required for Leaf Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 45(10), 1361-1370. doi:10.1093/pcp/pch201Ha, C. M., Jun, J. H., Nam, H. G., & Fletcher, J. C. (2007). BLADE-ON-PETIOLE1 and 2 Control Arabidopsis Lateral Organ Fate through Regulation of LOB Domain and Adaxial-Abaxial Polarity Genes. The Plant Cell, 19(6), 1809-1825. doi:10.1105/tpc.107.051938Handberg, K., & Stougaard, J. (1992). Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. The Plant Journal, 2(4), 487-496. doi:10.1111/j.1365-313x.1992.00487.xHepworth, S. R., & Pautot, V. A. (2015). Beyond the Divide: Boundaries for Patterning and Stem Cell Regulation in Plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01052Hepworth, S. R., Zhang, Y., McKim, S., Li, X., & Haughn, G. W. (2005). BLADE-ON-PETIOLE–Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. The Plant Cell, 17(5), 1434-1448. doi:10.1105/tpc.104.030536Hepworth, S. R., Klenz, J. E., & Haughn, G. W. (2005). UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 223(4), 769-778. doi:10.1007/s00425-005-0138-3Hibara, K., Karim, M. R., Takada, S., Taoka, K., Furutani, M., Aida, M., & Tasaka, M. (2006). Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation. The Plant Cell, 18(11), 2946-2957. doi:10.1105/tpc.106.045716Høgslund, N., Radutoiu, S., Krusell, L., Voroshilova, V., Hannah, M. A., Goffard, N., … Stougaard, J. (2009). Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants. PLoS ONE, 4(8), e6556. doi:10.1371/journal.pone.0006556JARVIS, B. D. W., PANKHURST, C. E., & PATEL, J. J. (1982). Rhizobium loti, a New Species of Legume Root Nodule Bacteria. International Journal of Systematic Bacteriology, 32(3), 378-380. doi:10.1099/00207713-32-3-378Karim, M. R., Hirota, A., Kwiatkowska, D., Tasaka, M., & Aida, M. (2009). A Role for Arabidopsis PUCHI in Floral Meristem Identity and Bract Suppression. The Plant Cell, 21(5), 1360-1372. doi:10.1105/tpc.109.067025Khan, M., Xu, M., Murmu, J., Tabb, P., Liu, Y., Storey, K., … Hepworth, S. R. (2011). Antagonistic Interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE Regulates Arabidopsis Inflorescence Architecture. Plant Physiology, 158(2), 946-960. doi:10.1104/pp.111.188573Koch, B., & Evans, H. J. (1966). Reduction of Acetylene to Ethylene by Soybean Root Nodules. Plant Physiology, 41(10), 1748-1750. doi:10.1104/pp.41.10.1748Krall, L., Wiedemann, U., Unsin, G., Weiss, S., Domke, N., & Baron, C. (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 99(17), 11405-11410. doi:10.1073/pnas.172390699Kumagai, H., & Kouchi, H. (2003). Gene Silencing by Expression of Hairpin RNA in Lotus japonicus Roots and Root Nodules. Molecular Plant-Microbe Interactions®, 16(8), 663-668. doi:10.1094/mpmi.2003.16.8.663Levin, J. Z., & Meyerowitz, E. M. (1995). UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. The Plant Cell, 7(5), 529-548. doi:10.1105/tpc.7.5.529Long, J., & Barton, M. K. (2000). Initiation of Axillary and Floral Meristems in Arabidopsis. Developmental Biology, 218(2), 341-353. doi:10.1006/dbio.1999.9572Małolepszy, A., Mun, T., Sandal, N., Gupta, V., Dubin, M., Urbański, D., … Andersen, S. U. (2016). The LORE 1 insertion mutant resource. The Plant Journal, 88(2), 306-317. doi:10.1111/tpj.13243McKim, S. M., Stenvik, G.-E., Butenko, M. A., Kristiansen, W., Cho, S. K., Hepworth, S. R., … Haughn, G. W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development, 135(8), 1537-1546. doi:10.1242/dev.012807Mun, T., Bachmann, A., Gupta, V., Stougaard, J., & Andersen, S. U. (2016). Lotus Base: An integrated information portal for the model legume Lotus japonicus. Scientific Reports, 6(1). doi:10.1038/srep39447Norberg, M. (2005). The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 132(9), 2203-2213. doi:10.1242/dev.01815Okamoto, S., Yoro, E., Suzaki, T., & Kawaguchi, M. (2013). Hairy Root Transformation in Lotus japonicus. BIO-PROTOCOL, 3(12). doi:10.21769/bioprotoc.795Oldroyd, G. E. D. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252-263. doi:10.1038/nrmicro2990Oldroyd, G. E. D., & Downie, J. A. (2008). Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology, 59(1), 519-546. doi:10.1146/annurev.arplant.59.032607.092839Pate, J. S., Gunning, B. E. S., & Briarty, L. G. (1969). Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta, 85(1), 11-34. doi:10.1007/bf00387658Ping, J., Liu, Y., Sun, L., Zhao, M., Li, Y., She, M., … Ma, J. (2014). Dt2 Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean. The Plant Cell, 26(7), 2831-2842. doi:10.1105/tpc.114.126938Quandt, H.-J. (1993). Transgenic Root Nodules ofVicia hirsuta:A Fast and Efficient System for the Study of Gene Expression in Indeterminate-Type Nodules. Molecular Plant-Microbe Interactions, 6(6), 699. doi:10.1094/mpmi-6-699Roux, B., Rodde, N., Jardinaud, M.-F., Timmers, T., Sauviac, L., Cottret, L., … Gamas, P. (2014). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. The Plant Journal, 77(6), 817-837. doi:10.1111/tpj.12442Schultz, E. A., & Haughn, G. W. (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. The Plant Cell, 771-781. doi:10.1105/tpc.3.8.771Sinharoy, S., & DasGupta, M. (2009). RNA Interference Highlights the Role of CCaMK in Dissemination of Endosymbionts in the Aeschynomeneae Legume Arachis. Molecular Plant-Microbe Interactions®, 22(11), 1466-1475. doi:10.1094/mpmi-22-11-1466Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., Dowd, J. M., & Martin, P. G. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences, 92(7), 2647-2651. doi:10.1073/pnas.92.7.2647Soyano, T., Kouchi, H., Hirota, A., & Hayashi, M. (2013). NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus. PLoS Genetics, 9(3), e1003352. doi:10.1371/journal.pgen.1003352Suzaki, T., Yoro, E., & Kawaguchi, M. (2015). Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria. International Review of Cell and Molecular Biology, 111-158. doi:10.1016/bs.ircmb.2015.01.004Takeda, S., Hanano, K., Kariya, A., Shimizu, S., Zhao, L., Matsui, M., … Aida, M. (2011). CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. The Plant Journal, 66(6), 1066-1077. doi:10.1111/j.1365-313x.2011.04571.xTavakol, E., Okagaki, R., Verderio, G., Shariati J., V., Hussien, A., Bilgic, H., … Rossini, L. (2015). The Barley Uniculme4 Gene Encodes a BLADE-ON-PETIOLE-Like Protein That Controls Tillering and Leaf Patterning. Plant Physiology, 168(1), 164-174. doi:10.1104/pp.114.252882Udvardi, M., & Poole, P. S. (2013). Transport and Metabolism in Legume-Rhizobia Symbioses. Annual Review of Plant Biology, 64(1), 781-805. doi:10.1146/annurev-arplant-050312-120235Van de Velde, W., Guerra, J. C. P., Keyser, A. D., De Rycke, R., Rombauts, S., Maunoury, N., … Goormachtig, S. (2006). Aging in Legume Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula. Plant Physiology, 141(2), 711-720. doi:10.1104/pp.106.078691Verdier, J., Torres-Jerez, I., Wang, M., Andriankaja, A., Allen, S. N., He, J., … Udvardi, M. K. (2013). Establishment of theLotus japonicusGene Expression Atlas (LjGEA) and its use to explore legume seed maturation. The Plant Journal, 74(2), 351-362. doi:10.1111/tpj.12119WALSH, K. B., McCULLY, M. E., & CANNY, M. J. (1989). Vascular transport and soybean nodule function: nodule xylem is a blind alley, not a throughway. Plant, Cell and Environment, 12(4), 395-405. doi:10.1111/j.1365-3040.1989.tb01955.xWang, Q., Hasson, A., Rossmann, S., & Theres, K. (2015). Divide et impera : boundaries shape the plant body and initiate new meristems. New Phytologist, 209(2), 485-498. doi:10.1111/nph.13641Weng, L., Tian, Z., Feng, X., Li, X., Xu, S., Hu, X., … Yang, J. (2011). Petal Development in Lotus japonicus. Journal of Integrative Plant Biology, 53(10), 770-782. doi:10.1111/j.1744-7909.2011.01072.xWerner, G. D. A., Cornwell, W. K., Sprent, J. I., Kattge, J., & Kiers, E. T. (2014). A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications, 5(1). doi:10.1038/ncomms5087Wopereis, J., Pajuelo, E., Dazzo, F. B., Jiang, Q., Gresshoff, P. M., de Bruijn, F. J., … Szczyglowski, K. (2000). Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. The Plant Journal, 23(1), 97-114. doi:10.1046/j.1365-313x.2000.00799.xWu, X.-M., Yu, Y., Han, L.-B., Li, C.-L., Wang, H.-Y., Zhong, N.-Q., … Xia, G.-X. (2012). The Tobacco BLADE-ON-PETIOLE2 Gene Mediates Differentiation of the Corolla Abscission Zone by Controlling Longitudinal Cell Expansion. Plant Physiology, 159(2), 835-850. doi:10.1104/pp.112.193482Xu, M., Hu, T., McKim, S. M., Murmu, J., Haughn, G. W., & Hepworth, S. R. (2010). Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. The Plant Journal, 63(6), 974-989. doi:10.1111/j.1365-313x.2010.04299.xXu, C., Park, S. J., Van Eck, J., & Lippman, Z. B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes & Development, 30(18), 2048-2061. doi:10.1101/gad.288415.116Yaxley, J. (2001). Leaf and Flower Development in Pea (Pisum sativum L.): Mutants cochleata andunifoliata. Annals of Botany, 88(2), 225-234. doi:10.1006/anbo.2001.1448Žádníková, P., & Simon, R. (2014). How boundaries control plant development. Current Opinion in Plant Biology, 17, 116-125. doi:10.1016/j.pbi.2013.11.013Zhang, S., Sandal, N., Polowick, P. L., Stiller, J., Stougaard, J., & Fobert, P. R. (2003). Proliferating Floral Organs (Pfo ), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. The Plant Journal, 33(4), 607-619. doi:10.1046/j.1365-313x.2003.01660.

    Molecular dissection of the pea shoot apical meristem*

    Get PDF
    The shoot apical meristem (SAM) is responsible for the development of all the above-ground parts of a plant. Our understanding of the SAM at the molecular level is incomplete. This study investigates the gene expression repertoire of SAMs in the garden pea (Pisum sativum). To this end, 10 346 EST sequences representing 7610 unique genes were generated from SAM cDNA libraries. These sequences, together with previously reported pea ESTs, were used to construct a 12K oligonucleotide array to identify genes with differential SAM expression, as compared to axillary meristems, root apical meristems, or non-meristematic tissues. A number of genes were identified, predominantly expressed in specific cell layers or domains of the SAM and thus are likely components of the gene networks involved in stem cell maintenance or the initiation of lateral organs. Further in situ hybridization analysis confirmed the spatial localization of some of these genes within the SAM. Our data also indicate the diversification of some gene expression patterns and hence functions in legume crop plants. A number of transcripts highly expressed in all three meristems have also been uncovered and these candidates may provide valuable insight into molecular networks that underpin the maintenance of meristematic functionality

    APETALA2 control of barley internode elongation

    Get PDF
    Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final 'peduncle' internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering
    corecore