25 research outputs found

    Luminescent SiO2 nanoparticles for cell labeling: combined water dispersion polymerization and 3D condensation controlled by oligoperoxide surfactant-initiator

    Get PDF
    Hybrid polymer coated silica nanoparticles (NPs) were synthesized using low temperature graft (co)polymerization of trimethoxysilane propyl methacrylate (MPTS) initiated by surface-active oligoperoxide metal complex (OMC) in aqueous media. These NPs were characterized by means of kinetic, solid-state NMR, TEM and FTIR techniques. Two processes, namely the radical graft-copolymerization due to presence of double bonds and 3D polycondensation provided by the intra- or/and intermolecular interaction of organosilicic fragments, occurred simultaneously. The relative contribution of the reactions depending on initiator concentration and pH value leading to the formation of low cured polydisperse microparticles or OMC coated SiO2 NPs of controlled curing degree was studied. The availability of free-radical forming peroxide fragments on the surface of SiO2 NPs provides an opportunity for seeded polymerization leading to the formation of the functional polymer coated NPs with controlled particle structure, size, and functionality. Encapsulation of the luminescent dye (Rhodamine 6G) in SiO2 core of functionalized NPs provided a noticeable increase in their resistance to photo-bleaching and improved biocompatibility. These luminescent NPs were not only attached to murine leukemia L1210 cells but also tolerated by the mammalian cells. Their potential use for labeling of the mammalian cells is considered

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ изготовлСния ΠΊΠ»Π΅Π΅Π² для Π³ΠΎΡ„Ρ€ΠΎΠΊΠ°Ρ€Ρ‚ΠΎΠ½Π°

    Get PDF
    ДослідТСно ΠΊΠ»Π΅ΠΉΠΎΠ²Ρ– ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— Π½Π° основі Ρ€Ρ–Π·Π½ΠΈΡ… ΠΊΡ€ΠΎΡ…ΠΌΠ°Π»Ρ–Π² Ρ– ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ—Ρ… Π²ΠΏΠ»ΠΈΠ² Π½Π° ΡΠΊΡ–ΡΡ‚ΡŒ Π³ΠΎΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ.Investigational glue compositions on the basis of different starches and it is rotined, their influence on quality of the prepared product.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ»Π΅Π΅Π²Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π½Π° основС Ρ€Π°Π·Π½Ρ‹Ρ… ΠΊΡ€Π°Ρ…ΠΌΠ°Π»ΠΎΠ² ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΠΈΡ… влияниС Π½Π° качСство Π³ΠΎΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°

    Diastereospecific Bis-alkoxycarbonylation of 1,2-Disubstituted Olefins Catalyzed by Aryl Ξ±-Diimine Palladium(II) Catalysts

    Get PDF
    Readily synthesized aryl Ξ±-diimine derivatives have been used as efficient ligands for the palladium-catalyzed oxidative bis-alkoxycarbonylation reaction of 1,2-disubstituted olefins. The most active catalyst A was formed in situ from bis-(2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabutadiene and Pd(TFA)2 (TFA=trifluoroacetate). This catalytic system was able to selectively convert 1,2-disubstituted olefins into 2,3-disubstituted-succinic diesters with total diastereospecificity, in good yields (up to 97%) with 2 mol% of catalyst loading, under mild reaction conditions (4 bar of CO at 20 Β°C in presence of p- toluenesulfonic acid as additive and p-benzoquinone as oxidant). The optimized reaction conditions could be successfully applied to 1,2-disubstituted aromatic, aliphatic, cyclic olefins and to unsaturated fatty acid methyl esters, employing methanol or benzyl alcohol as nucleophiles. The use of the bulky, less reactive isopropyl alcohol has allowed to better understand the mechanisms involved in the catalytic process. The geometry of the carbonylated products can be explained as a consequence of a concerted syn addition of the Pd-alkoxycarbonyl moiety to the olefin C=C bond. Catalyst A was isolated, characterized and analyzed by single crystal X-ray diffraction analysis. (Figure presented.)

    Amphiphilic Invertible Polymers: Self-Assembly into Functional Materials Driven by Environment Polarity

    Get PDF
    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study, – amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica nanoparticles strongly differing in polarity. AIP modified silica nanoparticles are able to adsolubilize molecules of poorly water-soluble 2-naphthol into the adsorbed polymer layer. The adsolubilization ability of adsorbed invertible macromolecules makes AIP-modified silica nanoparticles potentially useful in wastewater treatment or biomedical applications. Finally, the invertible micellar assemblies were used as functional additives to improve the appearance of electrospun silicon wires based on cyclohexasilane, a liquid silicon precursor. AIP-assisted fabrication of silicon wires from the liquid cyclohexasilane precursor has potential as a scalable method for developing electronic functional materials

    Surface Active MonomersSynthesis, Properties, and Application /

    No full text
    XV, 67 p. 39 illus., 1 illus. in color.online res

    Solvent-Responsive Self-Assembly of Amphiphilic Invertible Polymers Determined with SANS

    No full text
    Amphiphilic invertible polymers (AIPs) are a new class of macromolecules that self-assemble into micellar structures and rapidly change structure in response to changes in solvent polarity. Using small-angle neutron scattering (SANS) data, we obtained a quantitative description of the invertible micellar assemblies (IMAs). The detailed composition and size of the assemblies (including the effect of temperature) were measured in aqueous and toluene polymer solutions. The results show that the invertible macromolecules self-assemble into cylindrical core–shell micellar structures. The composition of the IMAs in aqueous and toluene solutions was used to reveal the inversion mechanism by changing the polarity of the medium. Our experiments demonstrate that AIP unimers self-assemble into IMAs in aqueous solution, predominantly through interactions between the hydrophobic moieties of macromolecules. The hydrophobic effect (or solvophobic interaction) is the major driving force for self-assembly. When the polarity of the environment is changed from polar to nonpolar, polyΒ­(ethylene glycol) (PEG) and aliphatic dicarboxylic acid fragments of AIP macromolecules tend to replace each other in the core and the shell of the IMAs. However, neither the interior nor the exterior of the IMAs consists of fragments of a single component of the macromolecule. In aqueous solution, with the temperature increasing from 15 to 35 Β°C, the IMAs’ mixed core from aliphatic dicarboxylic acid and PEG moieties and PEG-based shell change the structure. As a result of the progressive dehydration of the macromolecules, the hydration level (water content) in the micellar core decreases at 25 Β°C, followed by dehydrated PEG fragments entering the interior of the IMAs when the temperature increases to 35 Β°C

    Fluorine-containing polyamphiphiles of block structure constructed of synthetic and biopolymer blocks

    No full text
    Aim. Purposeful preparation of polymeric surfactants combining hydrophobic fluorine-containing and hydrophilic synthetic and natural blocks via radical and non-radical reactions using peroxide, epoxide and/or amino- terminal groups of the polymeric elementary blocks. Methods. Radical and non-radical condensation reactions, polymerization, spectral (NMR- and luminescence spectroscopy), gel-permeation chromatography and other analytical techniques`. Results. Primary oligomers poly(F-MA)-MP were synthesized via radical polymerization of fluorine-alkyl methacrylate (F-MA) in the presence of peroxide-containing telogen (MP). That provides controlling the oligomer chain length and architectures as well as entering a terminal peroxide group in the macromolecules. Radical polymerization of vinyl pyrrolidone (NVP) initiated by poly(F-MA)-MP as macroinitiator in the presence of epoxide-containing derivative of cumene (CGE) was used for obtaining water soluble poly(F-MA)-block-poly(NVP)-CGE. Finally oligonucleotide (ONC) was attached via condensation reaction of ONC primary amino group with terminal epoxide group of poly(F-MA)-block-poly(NVP)-CGE. Conclusions. A series of novel block/comb-like copolymers with synthetic and natural parts was synthesized. Obtained tri-block copolymers can be used as markers for labeling bacteria and pathological items including cancer cells.ΠœΠ΅Ρ‚Π°. ЦілСспрямованС одСрТання ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎ-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½, які ΠΏΠΎΡ”Π΄Π½ΡŽΡŽΡ‚ΡŒ Π³Ρ–Π΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ– фторвмісні Ρ‚Π° Π³Ρ–Π΄Ρ€ΠΎΡ„Ρ–Π»ΡŒΠ½Ρ– синтСтичні Ρ‚Π° Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ– Π±Π»ΠΎΠΊΠΈ, Π·Π° допомогою Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΈΡ… Ρ‚Π° Π½Π΅Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΈΡ… кондСнсаційних Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉ Π· використанням пСроксидних, Споксидних, Ρ‚Π°/Π°Π±ΠΎ Π°ΠΌΡ–Π½ΠΎ- ΠΊΡ–Π½Ρ†Π΅Π²ΠΈΡ… Π³Ρ€ΡƒΠΏ Ρƒ складі ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΡ… Π±Π»ΠΎΠΊΡ–Π². ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ– Ρ‚Π° Π½Π΅Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ– Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ—, полімСризація, ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ– (ЯМР- Ρ‚Π° Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ‚Π½Π° спСктроскопія), гСль-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½Π° хроматографія Ρ‚Π° Ρ–Π½ΡˆΡ– Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρ– Ρ‚Π΅Ρ…Π½Ρ–ΠΊΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠŸΠ΅Ρ€Π²ΠΈΠ½Π½Ρ– ΠΎΠ»Ρ–Π³ΠΎΠΌΠ΅Ρ€ΠΈ ΠΏΠΎΠ»Ρ–(F-MA)-MП синтСзували ΡˆΠ»ΡΡ…ΠΎΠΌ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΡ— ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— Ρ„Ρ‚ΠΎΡ€-Π°Π»ΠΊΡ–Π» ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Ρƒ (F-MA) Ρƒ присутності пСроксидвмісного Ρ‚Π΅Π»ΠΎΠ³Π΅Π½Ρƒ (MП). Використання МП Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ Ρ‚Π° структури ΠΎΠ»Ρ–Π³ΠΎΠΌΠ΅Ρ€Π½ΠΈΡ… Π»Π°Π½Ρ†ΡŽΠ³Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ входТСння ΠΊΡ–Π½Ρ†Π΅Π²ΠΎΡ— пСроксидної Π³Ρ€ΡƒΠΏΠΈ Π΄ΠΎ складу ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Радикальна полімСризація N-Π²Ρ–Π½Ρ–Π»ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΎΠ½Ρƒ (NΠ’ΠŸ), Ρ–Π½Ρ–Ρ†Ρ–ΠΉΠΎΠ²Π°Π½Π° ΠΏΠΎΠ»Ρ–(F-MA)-MП як ΠΌΠ°ΠΊΡ€ΠΎΡ–Π½Ρ–Ρ†Ρ–Π°Ρ‚ΠΎΡ€ΠΎΠΌ, Ρƒ присутності Споксидвмісної ΠΏΠΎΡ…Ρ–Π΄Π½ΠΎΡ— ΠΊΡƒΠΌΠΎΠ»Ρƒ (ΠšΠ“Π•) Π±ΡƒΠ»Π° використана для отримання Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ–(F-MA)-Π±Π»ΠΎΠΊ-ΠΏΠΎΠ»Ρ–(NΠ’ΠŸ)-ΠšΠ“Π•. Π’ ΠΊΡ–Π½Ρ†Π΅Π²ΠΎΠΌΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–, приєднання ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρƒ (ОНК) Π΄ΠΎ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ носія Π±ΡƒΠ»ΠΎ здійснСно Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ”ΡŽ кондСнсації ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΎΡ— Π°ΠΌΡ–Π½ΠΎΠ³Ρ€ΡƒΠΏΠΈ ОНК Π· ΠΊΡ–Π½Ρ†Π΅Π²ΠΎΡŽ Споксидною Π³Ρ€ΡƒΠΏΠΎΡŽ ΠΏΠΎΠ»Ρ–(F-MA)-Π±Π»ΠΎΠΊ-ΠΏΠΎΠ»Ρ–(NΠ’ΠŸ) β€“ΠšΠ“Π•. Висновки. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ ΡΠ΅Ρ€Ρ–ΡŽ Π½ΠΎΠ²ΠΈΡ… Π±Π»ΠΎΠΊ-ΠΊΠΎΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Ρ–Π², Ρ‰ΠΎ ΠΏΠΎΡ”Π΄Π½ΡŽΡŽΡ‚ΡŒ синтСтичні Ρ‚Π° Π±Ρ–ΠΎΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ‚Ρ€ΠΈΠ±Π»ΠΎΠΊ-ΠΊΠΎΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані Π² якості ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ–Π² для мічСння Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ Ρ‚Π° ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ…, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ Ρ€Π°ΠΊΠΎΠ²Ρ–, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½.ЦСль. Π¦Π΅Π»Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств, ΡΠΎΡ‡Π΅Ρ‚Π°ΡŽΡ‰ΠΈΡ… Ρ„Ρ‚ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Π΅ ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Π΅ синтСтичСскиС ΠΈ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ Π±Π»ΠΎΠΊΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π½Π΅Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… кондСнсационных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ с использованиСм ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… пСроксидных, эпоксидных ΠΈ/ΠΈΠ»ΠΈ Π°ΠΌΠΈΠ½ΠΎ- Π³Ρ€ΡƒΠΏΠΏ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π±Π»ΠΎΠΊΠΎΠ². ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π½Π΅Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, полимСризация, ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ (ЯМР- ΠΈ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Π°Ρ спСктроскопия), гСль-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π°Ρ хроматография ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ аналитичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΠ»ΠΈ(F-MA)-MП синтСзировали ΠΏΡƒΡ‚Π΅ΠΌ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„Ρ‚ΠΎΡ€-Π°Π»ΠΊΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° (F-MA) Π² присутствии пСроксидсодСрТащСго Ρ‚Π΅Π»ΠΎΠ³Π΅Π½Π° (МП). ИспользованиС МП обСспСчиваСт ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ пСроксидной Π³Ρ€ΡƒΠΏΠΏΡ‹ Π² состав ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Радикальная полимСризация N-Π²ΠΈΠ½ΠΈΠ»ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΎΠ½Π° (NΠ’ΠŸ) Π² присутствии эпоксидсодСрТащСй ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΡƒΠΌΠΎΠ»Π° (ΠšΠ“Π­), инициируСмая ΠΌΠ°ΠΊΡ€ΠΎΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎΠ»ΠΈ(F-MA)-MП, Π±Ρ‹Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для получСния водорастворимого ΠΏΠΎΠ»ΠΈ(F-MA)-Π±Π»ΠΎΠΊ-ΠΏΠΎΠ»ΠΈ(NΠ’ΠŸ)-ΠšΠ“Π­. НаконСц, ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ (ОНК) Π±Ρ‹Π» присоСдинСн ΠΊ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΌΡƒ Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŽ посрСдством Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ кондСнсации ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΡ‹ ОНК с ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ эпоксидной Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ ΠΏΠΎΠ»ΠΈ(F-MA)-Π±Π»ΠΎΠΊ-ΠΏΠΎΠ»ΠΈ(NΠ’ΠŸ)-ΠšΠ“Π­. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ ряд Π½ΠΎΠ²Ρ‹Ρ… Π±Π»ΠΎΠΊ-сополимСров ΡΠΎΡ‡Π΅Ρ‚Π°ΡŽΡ‰ΠΈΡ… синтСтичСскиС ΠΈ Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚Ρ€ΠΈΠ±Π»ΠΎΠΊ-сополимСры ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ°ΠΊ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ для мСчСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ патологичСских, Π² Ρ‚ΠΎΠΌ числС Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ…, ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    corecore