

DOI: 10.1002/adsc.201((will be filled in by the editorial staff))

Diastereospecific Bis-Alkoxycarbonylation of 1,2-disubstituted Olefins Catalyzed by Aryl a-Diimine Palladium(II) Catalysts

Diego Olivieri,^a Francesco Fini,^b* Rita Mazzoni,^a Stefano Zacchini,^a Nicola Della Ca',^c Gilberto Spadoni,^d Bartolo Gabriele,^e Raffaella Mancuso,^e Valerio Zanotti^a and Carla Carfagna^a*

- ^a Department of Industrial Chemistry "T. Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna (BO), Italy
- E-mail: <u>carla.carfagna@unibo.it</u>
- ^b Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy E-mail: francesco.fini@unimore.it
- ^c Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17 A, 43124 Parma (Italy)
- ^d Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029 Urbino (PU), Italy
- ^e Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201######.((Please delete if not appropriate))

Abstract. Readily synthesized aryl α -diimine derivatives have been used as efficient ligands for the palladiumcatalyzed oxidative bis-alkoxycarbonylation reaction of 1,2disubstituted olefins. The most active catalyst **A** was formed *in situ* from bis-(2,6-dimethylphenyl)-2,3-dimethyl-1,4diazabutadiene and Pd(TFA)₂ (TFA = trifluoroacetate). This catalytic system was able to selectively convert 1,2disubstituted olefins into 2,3-disubstituted-succinic diesters with total diastereospecificity, in good yields (up to 97%) with 2 mol% of catalyst loading, under mild reaction conditions (4 bar of CO at 20 °C in presence of *p*toluenesulfonic acid as additive and *p*-benzoquinone as oxidant). The optimized reaction conditions could be

cyclic olefins and to unsaturated fatty acid methyl esters, employing methanol or benzyl alcohol as nucleophiles. The use of the bulky, less reactive isopropyl alcohol has allowed to better understand the mechanisms involved in the catalytic process. The geometry of the carbonylated products can be explained as a consequence of a concerted *syn* addition of the Pd-alkoxycarbonyl moiety to the olefin C=C bond. Catalyst A was isolated, characterized and analyzed by single crystal X-ray diffraction analysis.

successfully applied to 1,2-disubstituted aromatic, aliphatic,

Keywords: alkenes; aryl α -diimine ligands; palladium; carbonylation; oxidative carbonylation; succinic acid esters

Introduction

Carbonylation reactions are among the most important reactions in organic and organometallic chemistry. They convert inexpensive feedstock such as olefins and carbon monoxide into highly valuable building blocks like aldehydes, esters or lactones.^[1] Despite the toxicity, carbon monoxide is one of the preferred C₁ building blocks especially in combination with palladium catalysis. After the pioneering contributions made by Heck and Tsuji,^[2] carbonylation reactions are performed in the presence of an oxidant to make the reaction conditions milder.^[3] Among carbonylation reactions, the bisalkoxycarbonylation is one of the most useful, actually an olefin, carbon monoxide and a suitable alcohol are converted into succinic acid derivatives,^[4] very important building blocks in organic and

medicinal chemistry. In particular the succinic acid moiety is ubiquitous in molecules that act as inhibitors of renin^[5] and matrix metalloproteinases.^[6] Moreover succinates are employed in various industrial fields, for instance in cosmetics,^[7] agricultural chemistry and in material science, where they are largely used as non-phthalate plasticizers^[8] and as monomers for polymers and dendrimers.^[9]

In literature various types of Pd-catalyzed olefin bis-alkoxycarbonylations have been described using phosphine or nitrogen ligands and molecular oxygen or benzoquinone as oxidant.^[3a,f] In particular, stereoselective bis-alkoxycarbonylation reactions have been widely studied,^[10] but only very few examples regarding disubstituted olefins have been reported so far,^[11] probably due to their lower reactivity compared to α -olefins.^[12] Recently, we have reported a novel catalytic system able to promote the alkoxycarbonylation of olefins and

alkynes.^[13] The catalytic systems are made of a palladium salt with 1,4-diaryl-2,3-diazabutadiene (Ar₂DABMe₂) or bis(aryl)acenaphthenequinonediimine (diaryl-BIAN) ligands. Analogous Pd(II) catalysts bearing aryl adiimine ligands were also used by us in the copolymerization of styrenes with CO to yield copolymers with a high degree of tacticity.^[14] On the basis of the acquired knowledge^[13,14,15] and considering the results obtained on the carbonylation of terminal olefins,^[13a] in this paper we have extensively studied the diastereoselective bisalkoxycarbonylation reaction of 1,2-disubstituted olefins with different alcohols for the synthesis of 2,3-disubstituted succinic acid esters, under mild reaction conditions.

Results and Discussion

As a disubstituted olefin benchmark, cis-βmethylstyrene was used to optimize the reaction conditions. Taking into account the conditions previously employed in the case of terminal olefins,^[13a] a further optimization study on the ligands and palladium sources in the oxidative bisalkoxycarbonylation reaction was performed. In the initial experiment, the *in situ* formed complex Pd(TFA)₂/1a, in 0.5 mol% of catalyst loading, was used with *p*-benzoquinone as oxidizing agent, *p*toluenesulfonic acid (p-TSA) as additive, in 7:1 MeOH/THF (0.5 M) as reaction medium, at 4 bar of pressure of CO and room temperature, converting only 50% of cis- β -methylstyrene (Table 1, entry 1). By switching the ligand to the more straightforward synthesized ligand 1b, the same result was obtained in terms of conversion (50%, entry 2). Lowering the concentration of the catalyst $Pd(TFA)_2/1b$ a detrimental effect on the conversion has been detected (table 1, entries 3 and 4). On the other hand, by using ligand 1c no conversion was observed, confirming the necessity for an ortho-disubstituted diaryl α -diimine ligand (table 1, entry 5).^[13]

Besides ligands, other palladium sources were tested in order to improve the efficiency of the process. However. neither $Pd(OAc)_2$ nor (PhCN)₂PdCl₂/2AgOTf were active enough to raise the conversion of the carbonylation reaction (Table 1, entries 6 and 7). Complete substrate conversion was instead observed when increasing the catalyst loading up to 2 mol% with both ligands 1a and 1b (entries 8 and 9). Due to its easier synthesis, the ligand of choice for the next experiments was 1b (see Experimental Section). Thus, the combination of $Pd(TFA)_2/1b$ (2 mol%) with benzoquinone as the oxidizing agent, p-TSA (2 mol%) as the acidic additive and 7:1 MeOH/THF (0.5 M) solution as reaction medium allowed obtaining the syn-2,3disubstituted succinic acid methyl ester 3a with total diastereospecificity under particularly mild reaction conditions, such as room temperature 20 °C and 4 bar of CO (Table 1, entry 9).

With optimized experimental reaction conditions in hand, we then proceeded to evaluate the scope of the reaction.

Table 1. Optimization of bis-methoxycarbonylation reaction of cis- β -methylstyrene **2a**.

^{a)} Reaction performed in autoclave at $P_{CO} = 4$ bar, with *cis*- β -methylstyrene **2a** (2 mmol-scale), palladium salts [Pd] (0.01 - 2 mol%), ligands **1a–c** (0.011 - 2.2 mol%), 2 mol% of *p*-TSA and 1.5 equiv. of BQ, in 7:1 MeOH/THF (0.5M) as the reaction medium, for 66 h. ^{b)} Determined by direct ¹H NMR analysis on a sample of the reaction mixture. ^{c)} Reaction performed by using 1.2 mol% of AgOTf instead of *p*-TSA.

Several 1,2-disubstituted aromatic, aliphatic and cyclic olefins were used together with different alcohols as nucleophiles (Table 2). In general, moderate to excellent results were achieved in the bis-alkoxycarbonylation of internal olefins. 2,3-Disubstituted aromatic and aliphatic methyl succinates **3a**, **3d**, **3g**, **3j**, **3m** (Table 2, entries 1, 4, 7,

10, 13) and benzyl esters **3b**, **3e**, **3h**, **3k**, **3n** (entries 2, 5, 8, 11, 14) were obtained with excellent isolated yields, up to 97%, and a total diastereospecificity.

In particular, all reactions performed with the optimized reaction conditions and methanol or benzyl alcohol as nucleophiles, gave complete conversion of the starting olefins, and near quantitative isolated yields of the corresponding products even with the cyclic olefin 2c (Table 2, entries 7–8). Interestingly 1,2-dialkyl substituted olefins (2d, 2e) gave similar results to those obtained with the aromatic ones and, at the best of our knowledge, this is the first time that the bis-alkoxycarbonylation was successfully applied to such alkenes (entries 10-11, 13-14).

With less nucleophilic isopropyl alcohol, less satisfactory results were attained. In particular, although the aromatic β -methylstyrenes **2a** and **2b** were fully converted, only 40% and 50% isolated yields of the corresponding succinic esters **3c** and **3f** were achieved (Table 2 entries 3 and 6).

^[a] Reactions performed in autoclave at P_{CO} of 4 bar, with olefins **2a–2e** (2 mmol-scale), 2 mol% of Pd(TFA)₂, 2.2 mol% of **1b**, 2 mol% of *p*-TSA and 1.5 equiv. of BQ, in 7:1 R³OH/THF (0.5M) as the reaction medium, for 66 h. ^[b] Isolated yields after column chromatography. ^[c] Conversion of the 1,2-disubstituted olefins and, in parenthesis, isolated yields of the converted products are reported.

In both cases, together with **3c** and **3f**, the respective by-products **4a** and **4b** were formed, deriving from the ability of hydroquinone (generated by reduction of benzoquinone under the reaction conditions) to act as a nucleophile, thus competing with the isopropanol (Scheme 1).

Scheme 1. Formation of by-products 4a and 4b

By-products **4a** and **4b** have been isolated (**4a** Y. = 46 %, **4b** Y. = 41 %)^[16] and fully characterized.

To identify the structures of compounds 4a and b, in addition to ¹H and ¹³C NMR spectra (Figure S8 and Figure S11), it was necessary to perform HMBC experiments that allowed us to find out that, in both cases, the isopropoxy carbonyl group is bound to the CH bearing the methyl (Figure S9). This carbon-bond connectivity was also confirmed by XRD analysis of single crystals of **4b** obtained upon slow diffusion of *n*-hexane into a dichloromethane solution of the compound (Figure S10 and Table S4). Although compounds 4a, 4b represent the by-products of the carbonylation reactions of olefins 2a and 2b with *i*-PrOH, they can be regarded as interesting products as they contain two different ester moieties that may have a diverse reactivity in further reactions. Moreover, the identification of structure of compounds 4a and 4b provided further details on the catalytic cycle of the bis-alkoxycarbonylation process (vide infra). The carbonylation reactions of aliphatic 1,2-disubstituted olefins 2c, 2d and 2e with isopropyl alcohol did not give analogous results compared with the aromatic olefins. Although esters 3i, 3l and 3o were isolated stereospecifically, conversions and yields were less satisfactory, even after further reaction optimization (Table 2, entries 9, 12 and 15).[17]

Considering the excellent results obtained in the bis-methoxycarbonylation of the aliphatic olefins 2d and 2e (table 2, entries 10 and 13), in order to evaluate how general this reaction is, alkenes with a double bond remote from the terminal methyl group, such as trans-3-octene 2f, cis-4-octene 2g and trans-4-octene 2h, were also tested. Complete conversions of the trans olefins 2f and 2h have been achieved, obtaining the corresponding carbonylated products 3p and **3r** with 92% and 76% isolated yields respectively (table 3, entry 1 and entry 3). Even if only 49% of *cis*-4-octene has been transformed in the carbonylated compound 3q, almost all the product was recovered (table 3, entry 2). Finally, olefins containing a more internal double bond, such as unsaturated fatty acid methyl esters, were tested as substrates. While the methyl trans-9-octadecenoate 2j has been fully converted, obtaining the bis-carbonylated product 3t in 78% isolated yield (table 3, entry 5), with the

methyl oleate **2i** a 50% of conversion was observed (table 3, entry 4).¹⁸

 Table 3. Bis-methoxycarbonylation of aliphatic 1,2disubstituted olefins 2f-2j.

^[a] Reactions performed in autoclave at P_{CO} of 4 bar, with olefins **2f–2j** (2 mmol-scale), 2 mol% of Pd(TFA)₂, 2.2 mol% of **1b**, 2 mol% of *p*-TSA and 1.5 equiv. of BQ, in 7:1 MeOH/THF (0.5M) as the reaction medium, for 66 h.

All the products **3p-3t** were obtained with a total diastereospecificity and the *trans* aliphatic alkenes appear to be more reactive than the *cis* ones. This is the first time that the bis-alkoxycarbonylation of unsaturated fatty acid methyl esters, without isomerization of the double bond, yielding to methyl tricarboxylate compounds, is reported. Indeed, in literature, alkoxycarbonylations of internal olefins, such as 3-octene and 4-octene,¹⁹ and of unsaturated fatty acid methyl esters,²⁰ lead to linear esters and to linear α,ω dicarboxylic acid diesters respectively, through a Pd-catalyzed isomerizing methoxycarbonylation process.

Keeping in mind the above results and the literature data, $^{[4k,13,14,21,22]}$ the catalytic cycle depicted in Scheme 2 is proposed, summarizing all the reactions involved in the bis-alkoxycarbonylation process. The (bis(2,6-dimethylphenyl)butane-2,3-diimine) palladium(II)bis(trifluoroacetate) catalyst **A** (Scheme 2, top) is formed *in situ* from the reaction between Pd(TFA)₂ and the ligand **1b** in THF.

With the intent of isolating and characterizing the catalyst, **A** was *ad hoc* synthesized, as reported in the Experimental Section. Because of the insolubility of **A** in the most common solvents and its degradation in DMSO, the NMR spectra were recorded in CDCl₃, after dissolving **A** in few microliters of hexafluoroisopropanol (HFIP).

From the ¹H NMR spectrum it appears that the signals of the protons H4, H5 and H7 of the complex A (Figure 1) are shifted downfield (about 0.10 - 0.30 ppm) respect to the free ligand **1b**, while the signal of H3 remains constant (Table S1, Supporting Information).

Scheme 2. Proposed catalytic cycle

Moreover, in the ¹³C NMR spectrum all the carbon signals are shifted downfield (about 2.1 - 9.1 ppm) compared to free ligand **1b**, with the exception of the aromatic carbon C1 directly linked to the nitrogen atom that is shifted upfield (Table S2).

Figure 1. Complex A

The observed behaviour confirms the formation of the palladium complex and it is in agreement with the electron withdrawing effect of the metal center. Analogous complexes with bipyridine, phenanthroline or aryl α -diimine ligands have been previously reported.^[23] Red/orange single crystals of $A \cdot (CF_3)_2 CHOH$, suitable for XRD analysis, were obtained by slow evaporation of the solvent, after dissolving the catalyst in a small amount of HFIP and adding CHCl₃. Complex A (Figure 2 and Table S3) displays the expected square-planar geometry, with two coordination sites of the Pd(II) centre occupied by the aryl α -diimine ligand and the other two sites by two trifluoroacetate ligands. The bonding parameters are similar to those previously found in analogous complexes.^[23c,24] The angles between the planes of the two aromatic rings and the least-squares plane comprising Pd(1), N(1), N(2), O(1) and O(3) are $87.43(16)^{\circ}$ and $83.68(15)^{\circ}$, respectively. Within the unit cell of A·(CF₃)₂CHOH, a hydrogen bond is present, involving the O(5)-H(5) group of the cocrystallized HFIP molecule and O(2), which belongs to one of the trifluoroacetate ligands of A [O(5)-H(5)]0.84 Å, H(5)····O(2) 1.91 Å, O(5)····O(2) 2.739(9) Å, <O(5)H(5)O(2) 169.3°].

Figure 2. Molecular structure of Complex **A**. Displacement ellipsoids are at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Taking up the description of the catalytic cycle, reaction of \mathbf{A} with the alcohol allows the formation of the active species \mathbf{B} and the insertion of CO leads to the alkoxycarbonyl-palladium complex \mathbf{C} (Scheme 2). The successive coordination and insertion of the

alkene in C affords the 5-membered palladacycle D. In the case of *cis*- or *trans*- β -methylstyrene, where R¹ is a phenyl ring, the η^3 -allylic intermediate **D'** could be in equilibrium with **D**.^[14, 25] In any case, further CO insertion gives the complex **E**. Intermediates similar to \mathbf{D} ,^[22] \mathbf{D} ,^[21] and \mathbf{E} ^[21b] have been previously isolated characterized and by us through stoichiometric model reactions. Finally, а nucleophilic attack of the alcohol on the carbonyl linked to Pd in the intermediate E, leads to the final product 3 and the palladium hydride complex F. Benzoquinone regenerates the active species **B** closing the catalytic cycle (Scheme 2).^[26]

The conservation of the *trans* or *cis* geometry of the 1-2 disubstituted alkene, in the palladacycle intermediate **D**, can be explained through a concerted *syn* addition of the Pd-alkoxycarbonyl moiety to the olefin C=C bond (Scheme 3).^[22a,27] The resulting four-membered transition states **TS**-*trans* and **TS**-*cis*, depicted in Scheme 3, account for the diastereospecificity of the bis-alkoxycarbonylation reaction.

Scheme 3. *Syn* addition of the Pd-alkoxycarbonyl fragment to the *cis* or *trans* olefins

The proposed catalytic cycle (Scheme 2) allows us to figure out also the causes for the formation of byproducts 4, occurring in the reactions between β methylstyrenes and *i*-PrOH as nucleophile (Scheme 1). Considering the 2-1 regioselectivity of the insertion of the β -methylstyrenes^[22a] into the Pdalkoxycarbonyl bond of complex C (Scheme 2), the formation of both compounds 3 and 4 may results from a competition between isopropanol and hydroquinone (formed during the catalytic cycle) to act as nucleophiles towards the intermediate E. The smaller steric hindrance of hydroquinone compared

to isopropanol makes the first one more reactive, but being the *i*-PrOH present in great excess, the succinate esters 3 and the by-products 4 are formed in almost equal quantities. Furthermore, from the structure of 4a and 4b it can be deduced that, while in the highly hindered intermediate E there is a competition between the two nucleophiles, in the intermediate F only the *i*-PrOH, present in greater amounts, reacts regenerating the active species **B** Supporting Information). (Scheme S1. This information on the catalytic cycle could be useful to design the synthesis of succinates with two different ester functionalities.

DFT studies are underway to better understand all steps of the catalytic cycle.

Conclusions

An efficient method for the Pd-catalyzed bisalkoxycarbonylation of 1,2-disubstituted olefins 2 to give 2,3-disubstituted-succinic diesters 3 has been developed, using Pd(TFA)₂ as palladium source, bis-(2,6-dimethylphenyl)-2,3-dimethyl-1,4-

diazabutadiene as ligand and *p*-benzoquinone as oxidant. The process is diastereospecific, due to the syn addition of the olefinic double bond to the alkoxycarbonyl palladium intermediate C. Moreover the high selectivity of the reaction and the nearly quantitative yields with aromatic, cyclic and aliphatic olefins using methanol or benzyl alcohol as nucleophiles, under particularly mild reaction conditions (4 bar of CO at 20°C), demonstrate the high efficiency of our catalytic system. For the first time the bis-alkoxycarbonylation reaction of 1,2dialkyl substituted olefins and of unsaturated fatty acid methyl esters has been successfully realized, corresponding products obtaining the stereospecifically, in good to excellent yields. In particular, if one of the substituents on the double bond is a methyl or an ethyl group the best results were achieved (yields up to 96%), while with alkenes bearing a more internal double bond, the results are slightly less satisfactory and the *trans* olefins resulted to be more reactive than the *cis* ones.

Furthermore, under our reaction conditions, olefin isomerization is not observed, as often happens in Pd catalyzed processes.^[3f] In conclusion our bisalkoxycarbonylation appears to be very general since it can be applied to a large number of different types of 1,2-disubstituted olefins.

The high reactivity of the catalytic system is probably due to the conformation of the palladium intermediates having the aryl rings of the ligand **1b** almost perpendicular to the Pd coordination plane, because of the presence of substituents in the *ortho* positions.^[21] This conformation probably favours the leaving of the succinate ester products **3**, enhancing the efficiency of the reactions. The structure of palladium catalyst **A** has been fully identified by NMR and XRD analysis. Based on the above results and the organometallic palladium intermediates, previously isolated and characterized by us in model reactions, a catalytic cycle, explaining the complete diastereoselectivity of the process, has been proposed. The use of the bulky isopropyl alcohol as nucleophile has allowed us to draw some further conclusions about the mechanism of the catalytic process.

Experimental Section

General methods and materials

All reactions were carried out under nitrogen atmosphere with dry solvents under anhydrous conditions, in a stainless steel autoclave, by using Schlenk technique. Reactions were monitored by 'H NMR taking a direct sample of the crude mixture. 'H NMR and '3'C NMR were recorded on a Bruker Avance 400 spectrometer ('H: 400 MHz, '3'C: 101 MHz), using CDCl₃ as solvent. Chemical shifts are reported in the δ scale relative to residual CHCl₃ (7.26 ppm) for 'H NMR and to the central line of CDCl₃ (77.16 ppm) for '3'C NMR. '3'C NMR were recorded with 'H broadband decoupling. 'F NMR were recorder on a Varian Mercury Plus VX 400 ('F: 376 MHz), using CDCl₃ as solvent. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t =triplet, q = quartet, hept = heptet, m = multiplet, dd = double doublets, dq = double quartets, td = triple doublets. Mass spectra were recorded on a LC-MS apparatus Agilent Ion-Trap 6310A 2795, using electrospray (ES+ or ES-) ionisation techniques. Carbon monoxide (Cp grade 99.99%) was supplied by Air Liquide, *p*-benzoquinone was purchased by Sigma-Aldrich and was recrystallized from n-heptane/EtOH mixture, olefins **2a–2j** were purchased from Sigma-Aldrich, Alfa Aesar or TCI, filtered off a plug of neutral Al₂O₃ and used without further purification. Anhydrous THF was distilled from Mg(OMe)₂ and isopropyl alcohol was distilled from CaH₂. Pd(TFA)₂ was weighted in an analytical balance without excluding moist and air. All other chemicals were purchased from Sigma-Aldrich and used without further purification. Ligand **1a** was synthesized by our group according to a previously reported procedure.^[14] Ligands **1b** and **1c**, used in the optimization reaction, were synthesized according to previously reported procedure.^[26] Compounds **3a**, **3d**, **3g**, **3i** were already known and the spectral date are identical to the previously reported literature data (see supporting information for more details).^[13a,4c,29]

Typical procedure for the bis-alkoxycarbonylation reaction of 1,2-disubstituted olefins.

In a nitrogen flushed Schlenk tube, equipped with a magnetic stirring bar, the respective olefins 2a-j (2 mmol) and the alcohol R³OH (3.5 mL) were added in sequence. The mixture was left under stirring for 10 min. In another nitrogen flushed Schlenk tube, equipped with a magnetic stirring bar, the Pd(TFA)₂ (13.3 mg, 0.04 mmol) and THF (0.5 mL) were added in sequence. After the mixture turned in a red/brown color (20 min), the ligand **1b** (12.8 mg, 0.044 mmol) was added. The mixture was left under stirring for 10 min, turning in a dark orange color. The olefin solution and the formed catalyst was injected in sequence in a nitrogen flushed autoclave, equipped with a magnetic stirring bar, containing benzoquinone (325 mg, 3 mmol) and *p*-TSA·H₂O (7.6 mg, 0.04 mmol). After 10 min of stirring, the autoclave was flushed three times with CO and pressurized with 4 bar of carbon monoxide. The

reaction was vigorously stirred at the room temperature (20°C) for 66 h. The autoclave was vented off, flushed with nitrogen and the reaction mixture was directly analyzed by ¹H NMR to determine the conversion of the olefins **2**. The crude was then dried under reduced pressure and filtered off a plug of silica gel, washing with CH₂Cl₂/Et₂O 1:1 (150 mL) finally the solution was dried up in vacuum. Then NaOH 1M (30 mL) was added and the solution was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic solution was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The product was eventually obtained after column chromatography on silica gel (Petroleum ether/CH₂Cl₂ 50:50 then 20:80; if benzyl alcohol was used as nucleophiles: Petroleum ether/CH₂Cl₂ 70:30 then 50:50).

(2R*,3R*)-Dibenzyl 2-methyl-3-phenylsuccinate (3b): Following the general procedure, compound 3b was obtained as a white powder; yield: 92% (0.715 g). ¹H NMR δ 7.47–7.27 (m, 13H), 7.14–7.07 (m, 2H), 5.22 (d, J = 12.4 Hz, 1H), 5.13 (d, J = 12.4 Hz, 1H), 4.94 (s, 2H), 4.02 (d, J = 11.0 Hz, 1H), 3.46 (dq, J = 11.0, 6.8 Hz, 1H), 1.40 (d, J = 6.8 Hz, 3H). ¹³C NMR δ 173.8, 171.9, 136.5, 135.61, 135.56, 128.6, 128.5, 128.43, 128.37, 128.2, 128.0, 127.93, 127.91, 127.7, 66.6, 66.2, 54.9, 43.7, 16.4. ESI-MS: m/z=389 [M+H]⁺.

(2R*,3R*)-Diisopropyl 2-methyl-3-phenylsuccinate (3c): Following the general procedure, compound 3c was obtained as a colorless oil; yield: 40% (0.232 g). ¹H NMR δ 7.37–7.31 (m, 2H), 7.30–7.19 (m, 3H), 4.99 (hept, J =6.3 Hz, 1H), 4.72 (hept, J = 6.3 Hz, 1H), 3.71 (d, J = 11.2 Hz, 1H), 3.20 (dq, J = 11.2, 6.8 Hz, 1H), 1.28 (d, J = 6.8 Hz, 3H), 1.23 (d, J = 6.3 Hz, 3H), 1.13 (d, J = 6.3 Hz, 3H), 1.01 (d, J = 6.3 Hz, 3H), 0.83 (d, J = 6.2 Hz, 3H). ¹³C NMR δ 173.9, 171.9, 137.1, 128.6, 128.5, 127.7, 68.5, 67.7, 55.6, 44.0, 21.9, 21.63, 21.59, 21.4, 16.5. ESI-MS: m/z=293 [M+H]⁺.

(2S*,3R*)-Dibenzyl 2-methyl-3-phenylsuccinate (3e): Following the general procedure, compound 3e was obtained as a colorless oil; yield: 90% (0.699 g). ¹H NMR δ 7.43–7.26 (m, 13H), 7.20–7.14 (m, 2H), 5.17 (d, *J* = 12.4 Hz, 1H), 5.03 (d, *J* = 12.4 Hz, 1H), 5.08 (d, *J* = 12.6 Hz, 1H), 5.03 (d, *J* = 12.6 Hz, 1H), 3.90 (d, *J* = 11.4 Hz, 1H), 3.30 (dq, *J* = 11.4, 7.3 Hz, 1H), 1.02 (d, *J* = 7.3 Hz, 3H). ¹³C NMR δ 175.4, 172.9, 136.3, 135.98, 135.89, 129.0, 128.62, 128.59, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 66.60, 66.59, 54.5, 42.5, 15.5. ESI-MS: m/z=389 [M+H]⁺.

(2S*,3R*)-Diisopropyl 2-methyl-3-phenylsuccinate (3f): Following the general procedure, compound 3f was obtained as a colorless oil; yield: 50% (0.292 g). ¹H NMR δ 7.35–7.24 (m, 5H), 5.03 (hept, J = 6.3 Hz, 1H), 4.94 (hept, J = 6.3 Hz, 1H), 3.69 (d, J = 11.4 Hz, 1H), 3.09 (dq, J = 11.4, 7.3 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.24 (d, J =6.3 Hz, 3H), 1.21 (d, J = 6.3 Hz, 3H), 1.05 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 7.3 Hz, 3H). ¹³C NMR δ 175.3, 172.7, 136.9, 128.8, 128.5, 127.6, 68.3, 68.0, 54.7, 42.8, 21.9, 21.80, 21.76, 21.4, 15.6. ESI-MS: m/z=293 [M+H]⁺.

(1R*,2S*)-Dibenzyl cyclohexane-1,2-dicarboxylate (3h): Following the general procedure, compound 3h was obtained as a colorless oil; yield: 80% (0.564 g). ¹H NMR δ 7.40–7.28 (m, 10H), 5.08 (d, J = 12.4 Hz, 2H), 5.03 (d, J = 12.4 Hz, 2H), 2.95–2.88 (m, 2H), 2.12–2.01 (m, 2H), 1.86–1.75 (m, 2H), 1.59–1.35 (m, 4H). ¹³C NMR δ 173.5, 136.1, 128.5, 128.24, 128.17, 66.3, 42.7, 26.3, 23.8. ESI-MS: m/z=353 [M+H]⁺. (2R*,3S*)-Dimethyl 2-methyl-3-pentylsuccinate (3j): Following the general procedure, compound 3j was obtained as a pale yellow oil; yield: 92% (0.423 g). ¹H NMR δ 3.68 (s, 3H), 3.67 (s, 3H), 2.73–2.62 (m, 2H), 1.70–1.54 (m, 1H), 1.43–1.31 (m, 1H), 1.31–1.17 (m, 6H), 1.12 (d, *J* = 6.7 Hz, 3H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR δ 175.5, 174.8, 51.9, 51.7, 48.7, 42.2, 31.7, 30.8, 27.2, 22.5, 15.3, 14.1. ESI-MS: m/z=231 [M+H]⁺.

(2R*,3S*)-Dibenzyl 2-methyl-3-pentylsuccinate (3k): Following the general procedure, compound 3k was obtained as a colorless oil; yield: 89% (0.681 g). ¹H NMR δ 7.39–7.28 (m, 10H), 5.14–5.05 (m, 4H), 2.81–2.69 (m, 2H), 1.69–1.55 (m, 1H), 1.41–1.30 (m, 1H), 1.26–1.15 (m, 6H), 1.13 (d, J = 6.6 Hz, 3H), 0.82 (t, J = 6.8 Hz, 3H). ¹³C NMR δ 174.6, 174.0, 135.90, 135.88, 128.60, 128.58, 128.5, 128.34 (2C), 128.32, 66.5, 66.4, 48.7, 42.3, 31.5, 30.7, 27.1, 22.4, 15.1, 14.0. ESI-MS: m/z=383 [M+H]⁺.

(2R*,3S*)-Diisopropyl 2-methyl-3-pentylsuccinate (3I): Following the general procedure, olefin 2d were converted for 42%, obtaining compound 3I as a pale orange oil with 43% of yield (0.103 g) over the converted olefin. ¹H NMR δ 5.10–4.96 (m, 2H), 2.67–2.56 (m, 2H), 1.69–1.57 (m, 1H), 1.44–1.34 (m, 1H), 1.34–1.18 (m, 18H), 1.12 (d, *J* = 6.5 Hz, 3H), 0.86 (t, *J* = 6.4 Hz, 3H). ¹³C NMR δ 174.6, 173.9, 67.9, 67.8, 48.9, 42.6, 31.7, 30.8, 27.1, 22.5, 22.0 (2C), 21.94, 21.88, 15.3, 14.1. ESI-MS: m/z=287 [M+H]⁺.

(2S*,3S*)-Dimethyl 2-methyl-3-pentylsuccinate (3m): Following the general procedure, compound 3m was obtained as a pale yellow oil; yield: 96% (0.442 g). ¹H NMR δ 3.66 (s, 3H), 3.65 (s, 3H), 2.78 (dq, J = 7.3, 8.3 Hz, 1H), 2.67 (dt, J = 4.4, 8.6 Hz, 1H), 1.64 – 1.46 (m, 2H), 1.34 – 1.18 (m, 6H), 1.16 (d, J = 7.1 Hz, 3H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR δ 175.8, 175.4, 51.9, 51.7, 47.5, 40.9, 31.8, 28.7, 26.6, 22.5, 14.3, 14.1. ESI-MS: m/z=231 [M+H]⁺.

(2S*,3S*)-Dibenzyl 2-methyl-3-pentylsuccinate (3n): Following the general procedure, compound 3n was obtained as a colorless oil; yield: 97% (0.742 g). ¹H NMR δ 7.40–7.27 (m, 10H), 5.13–4.99 (m, 4H), 2.89 (dq, J = 7.1, 1.1 Hz, 1H), 2.78 (dt, J = 4.1, 8.7 Hz, 1H), 1.73–1.48 (m, 2H), 1.33–1.21 (m, 6H), 1.19 (d, J = 7.1 Hz, 3H), 0.85 (t, J= 6.8 Hz, 3H). ¹³C NMR δ 175.1, 174.6, 136.1, 136.0, 128.60, 128.57, 128.4, 128.31, 128.27, 128.25, 66.5, 66.4, 47.5, 40.95, 31.8, 28.7, 26.6, 22.5, 14.3, 14.1. ESI-MS: m/z=383 [M+H]⁺.

(2S*,3S*)-Diisopropyl 2-methyl-3-pentylsuccinate (3o): Following the general procedure, olefin 2e were converted for 65%, obtaining compound 3o as a pale orange oil with 46% of yield (0.170 g) over the converted olefin. ¹H NMR δ 5.07–4.92 (m, 2H), 2.72 (dq, J = 7.1, 8.3 Hz, 1H), 2.62 (td, J = 4.1 8.7 Hz, 1H), 1.64–1.46 (m, 2H), 1.38–1.17 (m, 18H), 1.14 (d, J = 7.1 Hz, 3H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR δ 174.9, 174.3, 67.8, 67.7, 47.6, 41.1, 31.8, 28.6, 26.5, 22.5, 21.87, 21.85, 21.82, 21.77, 14.3, 14.1. ESI-MS: m/z=287 [M+H]⁺.

(2S*,3S*)-Dimethyl 2-butyl-3-ethylsuccinate (3p): Following the general procedure, compound 3p was obtained as a colorless oil; yield: 92% (0.424 g). ¹H NMR δ 3.64 (s, 3H), 3.63 (s, 3H), 2.70–2.57 (m, 2H), 1.75–1.50 (m, 4H), 1.35–1.09 (m, 4H), 0.84 (t, J = 7.1 Hz, 6H). ¹³C NMR δ 175.4, 175.1, 51.68, 51.67, 48.0, 46.2, 29.1, 28.9, 22.7, 22.2, 13.95, 11.3. ESI-MS: m/z=231 [M+H]⁺.

(2R*,3S*)-Dimethyl 2,3-dipropylsuccinate (3q):

Following the general procedure, compound **3q** was obtained as a colorless oil; yield: 91% (0.205g) over a conversion of 49% of *cis*-4-octene **2g**, determined by ¹H NMR analysis on a direct sample of the reaction mixture. ¹H NMR δ 3.69 (s, 6H), 2.70–2.59 (m, 2H), 1.67–1.51 (m, 2H), 1.37–1.17 (m, 6H), 0.87 (t, *J* = 7.1 Hz, 6H). ¹³C NMR δ 175.1, 51.7, 48.4, 33.2, 20.8, 14.0. ESI-MS: m/z=231 [M+H]⁺.

(2S*,3S*)-Dimethyl 2,3-dipropylsuccinate (3r): Following the general procedure, compound 3r was obtained as a pale yellow oil; yield: 76% (0.350 g). ¹H NMR δ 3.65 (s, 6H), 2.72–2.63 (m, 2H), 1.63–1.48 (m, 4H), 1.36–1.16 (m, 4H), 0.89 (t, J = 7.3 Hz, 6H). ¹³C NMR δ 175.3, 51.7, 46.6, 31.4, 20.3, 14.1. ESI-MS: m/z=231 [M+H]⁺.

(8R*.9S*)-Trimethvl heptadecane-1.8.9tricarboxylate (3s): Following the general procedure, compound 3s was obtained as a colorless oil after column chromatography on silica gel (Petroleum ether/CH2Cl2 30:70 then CH₂Cl₂, in this case the previous extraction with NaOH 1M / CH₂Cl₂ was not carried out due to 3s water solubility); yield: 92% (0.381g) over a conversion of 50% of methyl oleate 2i, determined by ¹H NMR analysis on a direct sample of the reaction mixture. ¹H NMR δ 3.69 (s, 6H), 3.66 (s, 3H), 2.67–2.57 (m, 2H), 2.29 (t, J = 7.5 Hz, 2H), 1.65–1.52 (m, 4H), 1.38–1.13 (m, 22H), 0.87 (t, J =6.9 Hz, 3H). ¹³C NMR δ 175.0, 174.98, 174.4, 51.7 (2C), 51.5, 48.47, 48.45, 34.1, 31.9, 30.97, 30.91, 29.40, 29.39, 29.24, 29.19, 29.0 (2C), 27.40, 27.35, 24.9, 22.7, 14.2. ESI-MS: m/z=415 [M+H]⁺.

(8R*,9R*)-Trimethyl heptadecane-1,8,9tricarboxylate (3t): Following the general procedure, compound 3t was obtained as a pale yellow oil after column chromatography on silica gel (Petroleum ether/CH₂Cl₂ 30:70 then CH₂Cl₂, in this case the previous extraction with NaOH 1M / CH₂Cl₂ was not carried out due to 3t water solubility); yield: 78% (0.647 g). ¹H NMR δ 3.66 (s, 9H), 2.72–2.61 (m, 2H), 2.29 (t, *J* = 7.5 Hz, 2H), 1.64–1.49 (m, 6H), 1.34–1.16 (m, 20H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR δ 175.38, 175.36, 174.4, 51.80, 51.79, 51.6, 46.82, 46.80, 34.2, 31.97, 29.7, 29.51, 29.47, 29.35, 29.28, 29.25, 29.17 (2C), 27.04, 27.01, 25.0, 22.8, 14.3. ESI-MS: m/z=415 [M+H]⁺.

(2R*,3R*)-1-(4-hydroxyphenyl)-4-methyl-3-methyl-2-phenylsuccinate (4a): Following the general procedure, compound 4a was obtained as a pale yellow oil after column chromatography on silica gel (CH₂Cl₂ then Et₂O/CH₂Cl₂ 5:95, in this case the previous extraction with NaOH 1M / CH₂Cl₂ was not carried out due to 4a water solubility); yield: 46% (0.315 g). ¹H NMR δ 7.44–7.39 (m, 2H), 7.36–7.26 (m, 3H), 6.85–6.71 (m, 4H), 4.77 (hept, J= 6.3 Hz, 1H), 4.00 (d, J = 10.9 Hz, 1H), 3.30 (dq, J = 6.8, 10.9 Hz, 1H), 1.39 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.3 Hz, 3H), 0.86 (d, J = 6.2 Hz, 3H). ¹³C NMR δ 174.2, 171.9, 154.1, 143.6, 136.1, 128.8, 128.6, 128.1, 122.1, 116.1, 68.3, 55.1, 43.9, 21.5, 21.3, 16.4. ESI-MS: m/z=341 [M-H]⁻.

(2S*,3R*)-1-(4-hydroxyphenyl)-4-methyl-3-methyl-2-phenylsuccinate (4b): Following the general procedure, compound 4b was obtained as a white powder after column chromatography on silica gel (CH₂Cl₂ then Et₂O/CH₂Cl₂ 5:95, in this case the previous extraction with NaOH 1M / CH₂Cl₂ was not carried out due to **4b** water solubility); yield: 41% (0.281 g). ¹H NMR δ 7.44–7.29 (m, 5H), 6.82–6.69 (m, 4H), 5.06 (hept, J = 6.2 Hz, 1H), 3.96 (d, J = 11.4 Hz, 1H), 3.19 (dq, J = 11.4, 7.3 Hz, 1H), 1.27 (d, J = 6.5 Hz, 3H), 1.25 (d, J = 6.5 Hz, 3H), 1.01 (d, J = 7.3 Hz, 3H). ¹³C NMR δ 175.3, 172.5, 153.4, 144.4, 136.2, 129.2, 128.7, 128.1, 122.4, 116.0, 68.4, 54.5, 42.9, 21.9, 21.8, 15.6. ESI-MS: m/z=341 [M-H]⁻.

Ad hoc synthesis of catalyst A: (bis(2,6-dimethylphenyl)butane-2,3-

diimine)palladium(II)bis(trifluoroacetate): In a nitrogen flushed Schlenk tube, equipped with a magnetic stirring bar, the Pd(TFA)₂ (13.3 mg, 0.04 mmol) and THF (0.5 mL) were added in sequence. After the mixture turned in a red/brown color (20 min), the ligand **1b** (11.8 mg, 0.0404 mmol) was added. The mixture was left under stirring for 10 min, turning in a dark orange color. The solvent was removed under vacuum. The complex **A** was obtained as a orange powder; yield: 91% (0.023 g). The NMR spectra are recorded dissolving the catalyst in 50µL of HFIP and then adding CDCl₃. ¹H NMR δ 7.35–7.23 (m, 2H), 7.15 (d, J = 7.6 Hz, 4H), 2.35 (s, 12H), 2.19 (s, 6H). ¹³C NMR δ 180.3, 163.6 (q, ²J_{CF} = 38 Hz), 140.6, 130.0, 129.4 (2C), 114.4 (d, ¹J_{CF} = 287 Hz), 18.99, 17.5. ¹⁹F NMR δ -75.1.

Acknowledgements

This work was supported by MIUR, University of Bologna and University of Urbino "Carlo Bo". We are grateful to the Department of Biomolecular Sciences of the University of Urbino for providing NMR instrumentation. FF thanks Prof. Fabio Prati, Dr. Emila Caselli and Dr. Diego Pinetti of University of Modena and Reggio Emilia, for useful discussions.

References

- [1] a) M. Beller, Catalytic Carbonylation Reactions, Springer, Berlin, 2006; b) L. Kollär, Modern Carbonylation Methods, Wiley-VCH, Weinheim, 2008; c) I. Omae, Coord. Chem. Rev. 2011, 255, 139; d) X.-F. Wu, H. Neumann, ChemCatChem 2012, 4, 447; e) L. Wu, X. Fang, Q. Liu, R. Jackstell, M. Beller, X.-F. Wu, ACS Catal. 2014, 4, 2977; f) P. H. Gehrtz, V. Hirschbeck, B. Ciszek, I. Fleischer, Synthesis 2016, 48, 1573; g) S. D. Friis, A. T. Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594; h) X .-F. Wu, M. Beller, Transition Metal Catalyzed Carbonylative Synthesis of Heterocycles in Topics in Heterocyclic Chemistry Vol. 42, Springer, 2016; i) C. Shen, X-F Wu, Chem. - Eur. J. 2017, 23, 2973.
- [2]a) J. Tsuji, M. Morikawa, J. Kijitsuji, J. Am. Chem. Soc.
 1964, 86, 4851; b) R. F. Heck, J. Am. Chem. Soc. 1972, 94, 2712.
- [3] a) X.-F. Wu, H. Neumann, M. Beller, *ChemSusChem* 2013, 6, 229; b) X.-F. Wu, H. Neumann, M. Beller, *Chem. Rev.* 2013, 113, 1; c) B. Gabriele, R. Mancuso, G. Salerno, *Eur. J. Org. Chem.* 2012, 6825; d) Q. Liu, H. Zhang, A. Lei, *Angew. Chem.* 2011, 123, 10978; *Angew. Chem., Int. Ed.* 2011, 50, 10788; e) J. Liu, J.

Chen, W. Sun, C. Xia, Chin. J. Catal. 2010, 31, 1; f) A. Brennfuehrer, H. Neumann, M. Beller, ChemCatChem 2009, 1, 28; g) A. Brennfuehrer, H. Neumann, M. Beller, Angew. Chem. 2009, 121, 4176; Angew. Chem., Int. Ed. 2009, 48, 4114; h) C. F. J. Barnard, Organometallics 2008, 27, 5402; i) B. Gabriele, G. Salerno, M. Costa, Top. Organomet. Chem. 2006, 10, 1397; j) C. Godard, B. K. Muñoz, A. Ruiz, C. Claver, Dalton Trans. 2008, 853; k) X.-F. Wu, RSC Adv. 2016, 6, 83831; l) P. Kalck, M. Urrutigoïty, Inorg. Chim. Acta 2015, 431, 110; m) S. T. Gadge, B. M. Bhanage, RSC Adv. 2014, 4, 10367.

- [4] a) D. M. Fenton, P. J. Steinwand, J. Org. Chem. 1972, 37, 2034; b) D. E. James, L. F. Hines, J. K. Stille, J. Am. Chem. Soc. 1976, 98. 1806; c) D. E. James, J. K. Stille, J. Am. Chem. Soc. 1976, 98, 1810; d) J. K. Stille, R. Divakaruni, J. Org. Chem. 1979, 44, 3474; e) G. E. Morris, D. Oakley, D. A. Pippard, D. J. H. Smith, J. Chem. Soc. Chem. Commun. 1987, 410; f) D. Milstein, Acc. Chem. Res. 1988, 21, 428; g) J. Tsuji, Synthesis 1990, 739; h) P. Bréchot, Y. Chauvin, D. Commereuc, L. Saussine, Organometallics 1990, 9, 26; i) S. Toda, M. Miyamoto, H. Kinoshita, K. Inomata, Bull. Chem. Soc. Jpn. 1991, 64, 3600; j) E. Drent, J. A. M. van Broekhoven, M. J. Doyle, J. Organomet. Chem. 1991, 417, 235; k) C. Bianchini, H. Man Lee, G. Mantovani, A. Meli, W. Oberhauser, New J. Chem. 2002, 26, 387; 1) Y. J. Cho, Y. N. Lim, W. Yoon, H. Yun, H.-Y. Jang, Eur. J. Org. Chem. 2017, 1139.
- [5] a) K. Inoguchi, T. Morimoto, K. Achiwa, J. Organomet. Chem. 1989, 370, C9; b) K. Yoshikawa, K. Inoguchi, T. Morimoto, K. Achiwa, Heterocycles 1990, 31, 1413; c) Y. Ito, T. Kamijo, H. Harada, F. Matsuda, S. Terashima, Tetrahedron Lett. 1990, 31, 2731; d) H. Jendralla, Tetrahedron Lett. 1991, 32, 3671; e) B. Kammermeier, G. Beck, W. Holla, D. Jacobi, B. Napierski, H. Jendralla, Chem. Eur. J. 1996, 2, 307.
- [6] a) M. Whittaker, C. D. Floyd, P. Brown, A. J. H. Geraing, *Chem. Rev.* 1999, 99, 2735; b) M. P. Sibi, H. Hasegawa, *Org. Lett.* 2002, 4, 3347; c) B. Fabre, A. Ramos, B. de Pascual-Teresa, *J. Med. Chem.* 2014, 57, 10205; d) R. E. Vandenbroucke, C. Libert, *Nat. Rev. Drug Discovery* 2014, *13*, 904.
- [7] K. Y. Heng, T. Y. Kei, J. S. Kochhar, H. Li, A.-L. Poh, L. Kang in *Handbook of Cosmeceutical Excipients and their Safeties*, Elsevier, 2014.
- [8] a) H. C. Erythropel, P. Dodd, R. Leask, M. Maric, D.G. Cooper, *Chemosphere* 2013, 91, 358; b) R. Jamarani, H. C. Erythropel, D. Burkat, J. A. Nicell, R. L. Leask, M. Maric, *Processes* 2017, 5, 43; c) A. Stuart, D. J. LeCaptain, C. Y. Lee, D. K. Mohanty, *Eur. Polym. J.* 2013, 49, 2785; d) A. Stuart, M. M. McCallum, D. Fan, D. J. LeCaptain, C. Y. Lee, D. K. Mohanty, *Polym. Bull.* 2010, 65, 589.
- [9] a) M. A. Carnahan, M. W. Grinstaff, *Macromolecules* 2001, 34, 7648; b) M. A. Carnahan, M. W. Grinstaff, *Macromolecules* 2006, 39, 2427; c) I. Hevus, Z. Pikh, *Macromol. Symp.* 2007, 254, 103; d) Y. Jiang, A. J. J.

Woortman, G. O. R. A. van Ekenstein, K. Loos, *Biomolecules* **2013**, *3*, 461.

- [10] a) C. Pisano, S. C. A. Nefkens, G. Consiglio, Organometallics 1992, 11, 1975; b) S. C. A. Nefkens, M. Sperrle, G. Consiglio, Angew. Chem. 1993, 105, 1837; Angew. Chem., Int. Ed. Engl. 1993, 32, 1719; c) Y. Ukaji, M. Miyamoto, M. Mikuni, S. Takeuchi, K. Inomata, Bull. Chem. Soc. Jpn. 1996, 69, 735; d) M. Sperrle, G. Consiglio, Chem. Ber./Recl. 1997, 130, 1557; e) K. Saigo, Tetrahedron Lett. 1998, 39, 7529; f) M. Hayashi, H. Takezaki, Y. Hashimoto, K. Takaoki, K. Saigo, Tetrahedron Lett. 1998, 39, 7529; g) M. Sperrle, G. Consiglio, J. Mol. Catal. A: Chem. 1999, 143, 263; h) S. Takeuchi, Y. Ukaji, K. Inomata, Bull. Chem. Soc. Jpn. 2001, 74, 955; i) L. Wang, W. Kwok, J. Wu, R. Guo, T. T.-L. Au-Yeung, Z. Zhou, A. S. C. Chan, K.-S. Chan, J. Mol. Catal. A: Chem. 2003, 196, 171; j) B. Liang, J. Liu, Y.-X. Gao, K. Wongkhan, D.-X. Shu, Y. Lan, A. Li, A. S. Batsanov, J. A. H. Howard, T. B. Marder, J.-H. Chen, Z. Yang, Organometallics 2007, 26, 4756; k)Y.-X. Gao, L. Chang, H. Shi, B. Liang, K. Wongkhan, D. Chaiyaveij, A. S. Batsanov, T. B. Marder, C.-C. Li, Z. Yang, Y. Huang, Adv. Synth. Catal. 2010, 352, 1955.
- [11] a) T. Aratani, K. Tahara, S. Takeuchi, Y. Ukaji, K. Inomata, *Chem. Lett.* 2007, *36*, 1328; b) O. Hamed, P. M. Henry, D. P. Becker, *Tetrahedron Lett.* 2010, *51*, 3514; c) T. Aratani, K. Tahara, S. Takeuchi, S. Kitamura, M. Murai, S. Fujinami, K. Inomata, Y. Ukaji, *Bull. Chem. Soc. Jpn.* 2012, *85*, 1225.
- [12] K. Dong, X. Fang, S. Gülak, R. Franke, A. Spannenberg, H. Neumann, R. Jackstell, M. Beller, *Nat. Commun.* 2017, *8*, 14117.
- [13] a) F. Fini, M. Beltrani, R. Mancuso, B. Gabriele, C. Carfagna, *Adv. Synth. Catal.* 2015, 357, 177; b) M. Beltrani, C. Carfagna, B. Milani, R. Mancuso, B. Gabriele, F. Fini, *Adv. Synth. Catal.* 2016, 358, 3244.
- [14] C. Carfagna, G. Gatti, P. Paoli, B. Binotti, F. Fini, A. Passeri, P. Rossi, B. Gabriele, *Organometallics* 2014, 33, 129.
- [15] a) C. Carfagna, G. Gatti, L. Mosca, P. Paoli, A. Guerri, *Chem. - Eur. J.* 2005, *11*, 3268; b) A. Scarel, J. Durand, D. Franchi, E. Zangrando, G. Mestroni, B. Milani, S. Gladiali, C. Carfagna, B. Binotti, S. Bronco, T. Gragnoli, *J. Organomet. Chem.* 2005, *690*, 2106; c) B. Binotti, G. Bellachioma, G. Cardaci, C. Carfagna, C. Zuccaccia, A. Macchioni, *Chem. - Eur. J.* 2007, *13*, 1570; d) A. Scarel, M. R. Axet, F. Amoroso, F. Ragaini, C. J. Elsevier, A. Holuigue, C. Carfagna, L. Mosca, B. Milani, *Organometallics* 2008, *27*, 1486; e) F. Amoroso, E. Zangrando, C. Carfagna, C. Müller, D. Vogt, M. Hagar, F. Ragaini, B. Milani, *Dalton Trans.* 2013, *42*, 14583; f) V. Rosar, A. Meduri, T. Montini, F. Fini, C. Carfagna, P. Fornasiero, G. Balducci, E. Zangrando, B. Milani, *ChemCatChem* 2014, *6*, 2403.
- [16] To reduce the amount of the by-product **4b**, two less bulky ligands, having only one ortho-substituent on the aryl ring, i.e. Ar_2DABMe_2 with Ar = naphthyl and Ar_2DABMe_2 with Ar = 2-(tert-butyl)-benzyl, were

tested, but in both cases the conversions were lower (60% and 30% respectively) and the ratio **3f/4b** was about the same. This is a further evidence of the need to use an aryl α -dimine ligand having two *ortho*-substituents in each aromatic ring.

- [17] Various parameters were changed to improve conversions and isolated yields of bisalkoxycarbonylation of *trans*-2-octene with i-PrOH: catalyst loading (up to 5 mol%); pressure of CO (1 bar); amount of p-TSA (ranging from 0 to 5%) and olefin concentration (0.25M), but none of them had a positive effect on the reactions.
- [18] Using the oleic acid as substrate for the bismethoxycarbonylation reaction, performing the reaction in the same conditions reported in table 3, a conversion of 50% was achieved, obtaining the methyl tricarboxylate product **3s** (table 3) and the 9,10methoxycarbonylated oleic acid (9R*,10S*)-9,10bis(methoxycarbonyl)octadecanoic acid in a 80:20 ratio respectively.
- [19] C.J. Rodriguez, D.F. Foster, G.R. Eastham, D.J. Cole-Hamilton, *Chem. Commun.* **2004**, 1720.
- [20] a) V. Goldbach, P. Roesle, S. Mecking, ACS Catal.
 2015, 5, 5951; b) C. Jimenez-Rodriguez, G.R. Eastham, D.J. Cole-Hamilton, Inorg. Chem. Commun. 2005, 8, 878.
- [21] a) C. Carfagna, G. Gatti, P. Paoli, P. Rossi, Organometallics 2009, 28, 3212; b) C. Carfagna, G. Gatti, L. Mosca, A. Passeri, P. Paoli, A. Guerri, Chem. Commun. 2007, 43, 4540.
- [22] a) C. Carfagna, G. Gatti, L. Mosca, P. Natanti, P. Paoli, P. Rossi, B. Gabriele, G. Salerno, *Dalton Trans.* 2011, 40, 6792; b) C. Carfagna, G. Gatti, D. Martini, C. Pettinari, *Organometallics* 2001, 20, 2175; c) C. Carfagna, G. Gatti, L. Mosca, P. Paoli, A. Guerri, *Organometallics* 2003, 22, 3967; d) B. Binotti, C. Carfagna, G. Gatti, D. Martini, L. Mosca, C. Pettinari, *Organometallics* 2003, 22, 1115.
- [23] a) B. Milani, E. Alessio, G. Mestroni, A. Sommazzi, F. Garbassi, E. Zangrado, N. Bresciani-Pahor, L. Randaccio, J. Chem. Soc., Dalton Trans. 1994, 13, 1903; b) R. M. Trend, Y. K. Ramtohul, B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 17778; c) S. R. Golisz, N. Hazari, J. A. Labinger, J. E. Bercaw, J. Org. Chem. 2009, 74, 8441; d) A. L. Gottumukkala, J. F. Teichert, D. Heijnen, N. Eisink, S. van Dijk, C. Ferrer, A. van den Hoogenband, A. J. Minnaard, J. Org. Chem. 2011, 76, 3498.
- [24] G. A. Grasa, R. Singh, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. 2003, 687, 269
- [25] F. C. Rix, M. J. Rachita, M. I. Wagner, M. Brookhart, B. Milani and J. C. Barborake, *Dalton Trans.* 2009, 42, 8977.
- [26] H. Grennberg, A. Gogoll, J.-E. Bäckvall, Organometallics 1993, 12, 1790.
- [27] C. Carfagna, G. Gatti, L. Mosca, P. Paoli, A. Guerri, *Helv. Chim. Acta* 2006, 89, 1660.

- [28] S. D. Ittel, L. Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169.
- [29] a) G. Sabbioni, J. B. Jones, J. Org. Chem. 1987, 52, 4565; b) G. Prado, A. X. Veiga, F. Fernandez-Nieto, M. R. Paleo, F. J. Sardina, Org. Lett. 2015, 17, 2054.

FULL PAPER

Diastereospecific Bis-Alkoxycarbonylation of 1,2disubstituted Olefins Catalyzed by Aryl α -Diimine Palladium(II) Catalysts

Adv. Synth. Catal. Year, Volume, Page - Page

Diego Olivieri,^a Francesco Fini,^b* Rita Mazzoni,^a Stefano Zacchini,^a Nicola Della Ca',^c Gilberto Spadoni,^d Bartolo Gabriele,^e Raffaella Mancuso,^e Valerio Zanotti^a and Carla Carfagna^a*

