38 research outputs found

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Mutated Pkhd1 alone is sufficient to cause autoimmune biliary disease on the nonobese diabetic (NOD) genetic background

    No full text
    We previously reported that nonobese diabetic (NOD) congenic mice (NOD.c3c4 mice) developed an autoimmune biliary disease (ABD) with similarities to human primary biliary cholangitis (PBC), including anti-mitochondrial antibodies and organ-specific biliary lymphocytic infiltrates. We narrowed the possible contributory regions in a novel NOD.Abd3 congenic mouse to a B10 congenic region on chromosome 1 ("Abd3") and a mutated Pkhd1 gene (Pkhd1del36-67) upstream from Abd3, and we showed via backcrossing studies that the NOD genetic background was necessary for disease. Here, we show that NOD.Abd3 mice develop anti-PDC-E2 autoantibodies at high levels, and that placing the chromosome 1 interval onto a scid background eliminates disease, demonstrating the critical role of the adaptive immune system in pathogenesis. While the NOD genetic background is essential for disease, it was still unclear which of the two regions in the Abd3 locus were necessary and sufficient for disease. Here, using a classic recombinant breeding approach, we prove that the mutated Pkhd1del36-67 alone, on the NOD background, causes ABD. Further characterization of the mutant sequence demonstrated that the Pkhd1 gene is disrupted by an ETnII-beta retrotransposon inserted in intron 35 in an anti-sense orientation. Homozygous Pkhd1 mutations significantly affect viability, with the offspring skewed away from a Mendelian distribution towards NOD Pkhd1 homozygous or heterozygous genotypes. Cell-specific abnormalities, on a susceptible genetic background, can therefore induce an organ-specific autoimmunity directed to the affected cells. Future work will aim to characterize how mutant Pkhd1 can cause such an autoimmune response
    corecore