78 research outputs found

    The strophomenide brachiopod Ahtiella Öpik in the Ordovician of Gondwana and the early history of the plectambonitoids

    Get PDF
    The Precordilleran species Ahtiella Argentina Benedetto and Herrera, 1986 is redescribed and illustrated and Monorthis coloradoensis Benedetto, 1998b from northwestern Argentina is reassigned to the genus Ahtiella Öpik, 1932. Ahtiella famatiniana new species from volcaniclastic rocks of the Famatina range (western Argentina) and Ahtiella tunaensis new species from the Precordillera basin (Cuyania terrane) are proposed. Paleogeographic and stratigraphic evidence strongly suggests that Ahtiella originated in the Andean region of Gondwana to further migrate to Avalonia, Baltica, and Cuyania. Contrary to previous assumptions, the fossil record from the Famatina volcaniclastic succession suggests that the plectambonitoid Ahtiella famatiniana n. sp. evolved from the hesperonomiid orthoid Monorthis transversa Benedetto, 2003 that always occurs in the underlying strata. Phylogenetic analysis of Ahtiella species shows that A. famatiniana n. sp. and the Peruvian A. zarelae Villas in Gutiérrez-Marco and Villas, 2007 are not only the earliest species of the genus but also are morphologically intermediate between Monorthis Bates, 1968 and the later and more derived species of Ahtiella from Baltica and Cuyania. If, as empirical evidence presented here shows, Ahtiella originated from Monorthis through a series of minor transformations, then the impressive morphological gap between orthides and strophomenides was bridged through short-time cladogenesis events, suggesting that it might not have a definite discontinuity between the species level evolution and the origin of higher taxa (macroevolution).Fil: Benedetto, Juan Luis Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin

    A cryptic record of Burgess Shale-type diversity from the early Cambrian of Baltica

    Get PDF
    Exceptionally preserved ‘Burgess Shale-type’ fossil assemblages from the Cambrian of Laurentia, South China and Australia record a diverse array of non-biomineralizing organisms. During this time, the palaeocontinent Baltica was geographically isolated from these regions, and is conspicuously lacking in terms of comparable accessible early Cambrian Lagerstätten. Here we report a diverse assemblage of small carbonaceous fossils (SCFs) from the early Cambrian (Stage 4) File Haidar Formation of southeast Sweden and surrounding areas of the Baltoscandian Basin, including exceptionally preserved remains of Burgess Shale-type metazoans and other organisms. Recovered SCFs include taxonomically resolvable ecdysozoan elements (priapulid and palaeoscolecid worms), lophotrochozoan elements (annelid chaetae and wiwaxiid sclerites), as well as ‘protoconodonts’, denticulate feeding structures, and a background of filamentous and spheroidal microbes. The annelids, wiwaxiids and priapulids are the first recorded from the Cambrian of Baltica. The File Haidar SCF assemblage is broadly comparable to those recovered from Cambrian basins in Laurentia and South China, though differences at lower taxonomic levels point to possible environmental or palaeogeographical controls on taxon ranges. These data reveal a fundamentally expanded picture of early Cambrian diversity on Baltica, and provide key insights into high-latitude Cambrian faunas and patterns of SCF preservation. We establish three new taxa based on large populations of distinctive SCFs: Baltiscalida njorda gen. et sp. nov. (a priapulid), Baltichaeta jormunganda gen. et sp. nov. (an annelid) and Baltinema rana gen. et sp. nov. (a filamentous problematicum)

    A cryptic record of Burgess Shale-type diversity from the early Cambrian of Baltica

    Get PDF
    Palaeontology published by John Wiley & Sons Ltd on behalf of The Palaeontological Association.Exceptionally preserved ‘Burgess Shale-type’ fossil assemblages from the Cambrian of Laurentia, South China and Australia record a diverse array of non-biomineralizing organisms. During this time, the palaeocontinent Baltica was geographically isolated from these regions, and is conspicuously lacking in terms of comparable accessible early Cambrian Lagerstätten. Here we report a diverse assemblage of small carbonaceous fossils (SCFs) from the early Cambrian (Stage 4) File Haidar Formation of southeast Sweden and surrounding areas of the Baltoscandian Basin, including exceptionally preserved remains of Burgess Shale-type metazoans and other organisms. Recovered SCFs include taxonomically resolvable ecdysozoan elements (priapulid and palaeoscolecid worms), lophotrochozoan elements (annelid chaetae and wiwaxiid sclerites), as well as ‘protoconodonts’, denticulate feeding structures, and a background of filamentous and spheroidal microbes. The annelids, wiwaxiids and priapulids are the first recorded from the Cambrian of Baltica. The File Haidar SCF assemblage is broadly comparable to those recovered from Cambrian basins in Laurentia and South China, though differences at lower taxonomic levels point to possible environmental or palaeogeographical controls on taxon ranges. These data reveal a fundamentally expanded picture of early Cambrian diversity on Baltica, and provide key insights into high-latitude Cambrian faunas and patterns of SCF preservation. We establish three new taxa based on large populations of distinctive SCFs: Baltiscalida njorda\textit{Baltiscalida njorda} gen. et sp. nov. (a priapulid), Baltichaeta jormunganda\textit{Baltichaeta jormunganda} gen. et sp. nov. (an annelid) and Baltinema rana\textit{Baltinema rana} gen. et sp. nov. (a filamentous problematicum).We acknowledge the support of Churchill College, Cambridge (BJS) and Clare Hall College, Cambridge (RG). This research was funded by the Natural Environmental Research Council, UK, grant NE/K005251/1 (BJS, THPH, RG, NJB)

    Abfallvermeidung in der industriellen Klebtechnik Abschlussbericht

    No full text
    Available from TIB Hannover: F97B2274 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman

    High Concentrations of Polyelectrolyte Complex Nanoparticles Decrease Activity of Osteoclasts

    No full text
    Fracture treatment in osteoporotic patients is still challenging. Osteoporosis emerges when there is an imbalance between bone formation and resorption in favor of resorption by osteoclasts. Thus, new implant materials for osteoporotic fracture treatment should promote bone formation and reduce bone resorption. Nanoparticles can serve as drug delivery systems for growth factors like Brain-Derived Neurotrophic Factor (BDNF), which stimulated osteoblast differentiation. Therefore, polyelectrolyte complex nanoparticles (PEC-NPs) consisting of poly(l-lysine) (PLL) and cellulose sulfate (CS), with or without addition of BDNF, were used to analyze their effect on osteoclasts in vitro. Live cell images showed that osteoclast numbers decreased after application of high PLL/CS PEC-NPs concentrations independent of whether BDNF was added or not. Real-time RT-PCR revealed that relative mRNA expression of cathepsin K and calcitonin receptor significantly declined after incubation of osteoclasts with high concentrations of PLL/CS PEC-NPs. Furthermore, Enzyme-Linked Immunosorbent Assay indicated that tartrate-resistant acidic phosphatase 5b activity was significantly reduced in the presence of high PLL/CS PEC-NPs concentrations. Consistent with these results, the pit formation analysis showed that less hydroxyapatite was resorbed by osteoclasts after incubation with high concentrations of PLL/CS PEC-NPs. BDNF had no influence on osteoclasts. We conclude that highly concentrated PLL/CS PEC-NPs dosages decreased osteoclastogenesis and osteoclasts activity. Moreover, BDNF might be a promising growth factor for osteoporotic fracture treatment since it did not increase osteoclast activity
    corecore