41 research outputs found

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Measurement of the gamma ray background in the Davis Cavern at the Sanford Underground Research Facility

    Get PDF
    Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of 1.9±0.4~γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220±60~Bq/kg of 40K, 29±15~Bq/kg of 238U, and 13±3~Bq/kg of 232Th

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    The association between hyperandrogenemia and the metabolic syndrome in morbidly obese women

    Get PDF
    Background Female abdominal obesity is associated with hyperandrogenemia (HA), but few studies have addressed the possible association between HA and metabolic syndrome (MetS) among obese women. Some studies indicate that insulin resistance may cause HA through different mechanisms. On the other hand, a bidirectional relationship between HA and insulin resistance has been suggested. Thus, we aimed to investigate if morbidly obese women with HA had higher odds of MetS and its components than those without HA (controls), independent of polycystic ovarian syndrome (PCOS) status. Methods This cross-sectional study comprised 1900 consecutive treatment seeking morbidly obese women 0.6 defined HA. Women with previously diagnosed PCOS and those with oligo- / anovulation combined with clinical or biochemical hyperandrogenism were defined as having PCOS. Multiadjusted associations between HA and MetS were assessed by logistic regression analysis. Results Out of 1900 morbidly obese women, 1089 (57 %), 846 (45 %) and 312 (16 %) had MetS, HA and PCOS, respectively. Compared with controls (without HA), women with HA were younger (34 [1] years vs. 39 [2], p < 0.001) had a higher prevalence of MetS (62 % vs. 53 %, p < 0.001), type 2 diabetes (18 % vs. 15 %, p = 0.045), low HDL-cholesterol (65 % vs. 48 %, p < 0.001) and hypertriglyceridemia (48 % vs. 41 %, p = 0.004), but a lower prevalence of raised blood pressure (53 % vs. 59 %, p = 0.014). Multivariable analyses showed that HA was associated with increased odds of MetS (OR 1.61 [95 % CI 1.27, 2.02]), dysglycemia (1.65 [1.28, 2.11]), low HDL-cholesterol (1.58 [1.27, 1.97]), and hypertriglyceridemia (1.43 [1.15, 1.79]). After stratification for the presence of PCOS, the results remained largely unchanged in women without PCOS; MetS (1.52 [1.18, 1.96), dysglycemia (1.71 [1.30, 2.25]), low HDL-cholesterol (1.55 [1.22, 1.98]) and hypertriglyceridemia (1.36 [1.06, 1.74]). Conclusion Morbidly obese women with HA had an approximately 1.5-fold increased odds of having MetS even in the absence of PCOS. Randomized controlled clinical trials, including therapeutic strategies to lower free testosterone levels, are however necessary to explore any cause-and-effect relationship

    Concentric domains in patterned thin films with perpendicular magnetic anisotropy

    No full text
    We report a finite-element micromagnetic study on domain structures in tetragonally distorted \chem{Ni(001)} films which are confined to the geometric shapes of a cylindrical disc, rectangular and triangular prisms, and a pacman. The thickness-dependent perpendicular anisotropy is provided by the inverse magnetostriction effect. It is found that some of the observed perpendicular domain patterns reflect the in-plane shape of their respective element. We call these domains “concentric domains”. The geometric effect on the domain shape is attributed to the inhomogeneity of the demagnetizing field
    corecore