8 research outputs found

    Hard X-Ray to Radio Multiwavelength SED Analysis of Local U/LIRGs in GOALS Sample with Self-consistent AGN Model Including Polar-dust Component

    Full text link
    We conduct a hard X-ray to radio multiwavelength spectral energy distribution (SED) decomposition for 57 local luminous and ultraluminous infrared galaxies (U/LIRGs) observed with Nuclear Spectroscopic Telescope Array and/or Swift/Burst Alert Telescope in GOALS (Armus et al. 2009) sample. We modify the latest SED-fitting code X-CIGALE by implementing the infrared (IR) CLUMPY model, allowing the multiwavelength study with the X-ray torus model (XCLUMPY) self-consistently. Adopting the torus parameters obtained by the X-ray fitting (Yamada et al. 2021), we estimate the properties of host galaxies, active galactic nucleus (AGN) tori, and polar dust. The star formation rates (SFRs) become larger with merger stage and most of them are above the main sequence. The SFRs are correlated with radio luminosity, indicating starburst emission is dominant in the radio band. Although polar-dust extinction is much smaller than torus extinction, the UV-to-IR (mainly IR) polar dust luminosities are ∌\sim2 times larger than the torus ones. The polar-dust temperature decreases while the physical size, estimated by the temperature and dust sublimation radius, increases with AGN luminosity from a few tens of parsec (early mergers) to kiloparsec scales (late mergers), where the polar dust is likely the expanding (i.e., evolving) dusty outflows. The comparison between SFRs and intrinsic AGN luminosities suggests that the starbursts occur first and AGNs arise later, and overall their growth rates follow the simultaneous coevolution relation that can establish the local galaxy-SMBH mass relation. We confirm the coexistence of intense starbursts, AGNs, and large-scale outflows in late mergers, supporting a standard AGN feedback scenario.Comment: 84 pages (5 tables/29 figures in the main text and 8 tables/18 figures in the Appendix), accepted in ApJ

    Torus Constraints in ANEPD-CXO245: A Compton-thick AGN with Double-peaked Narrow Lines

    Get PDF
    We report on the torus constraints of the Compton-thick active galactic nucleus (AGN) with double-peaked optical narrow-line region emission lines, ANEPD-CXO245, at z = 0.449 in the AKARI NEP Deep Field. The unique infrared data on this field, including those from the nine-band photometry over 2–24 ÎŒm with the AKARI Infrared Camera, and the X-ray spectrum from Chandra allow us to constrain torus parameters such as the torus optical depth, X-ray absorbing column, torus angular width (σ), and viewing angle (i). We analyze the X-ray spectrum as well as the UV–optical–infrared spectral energy distribution (UOI-SED) with clumpy torus models in X-ray (XCLUMPY) and infrared (CLUMPY), respectively. From our current data, the constraints on σ–i from both X-rays and UOI show that the line of sight crosses the torus as expected for a type 2 AGN. We obtain a small X-ray scattering fraction (NH from the X-ray spectrum, we find that the gas-to-dust ratio is <4 times larger than the Galactic value

    An Active Galactic Nucleus Recognition Model based on Deep Neural Network

    Get PDF
    To understand the cosmic accretion history of supermassive black holes, separating the radiation from active galactic nuclei (AGNs) and star-forming galaxies (SFGs) is critical. However, a reliable solution on photometrically recognising AGNs still remains unsolved. In this work, we present a novel AGN recognition method based on Deep Neural Network (Neural Net; NN). The main goals of this work are (i) to test if the AGN recognition problem in the North Ecliptic Pole Wide (NEPW) field could be solved by NN; (ii) to shows that NN exhibits an improvement in the performance compared with the traditional, standard spectral energy distribution (SED) fitting method in our testing samples; and (iii) to publicly release a reliable AGN/SFG catalogue to the astronomical community using the best available NEPW data, and propose a better method that helps future researchers plan an advanced NEPW database. Finally, according to our experimental result, the NN recognition accuracy is around 80.29% - 85.15%, with AGN completeness around 85.42% - 88.53% and SFG completeness around 81.17% - 85.09%

    Study of the morphological features in the Spitzer Survey of Stellar Structure in Galaxies (S⁎G)

    No full text
    Abstract Conspicuous morphological features such as rings, ringlenses, lenses, barlenses, and spiral arms are observed in many nearby disk galaxies. These features are believed to form due to the so-called secular evolution after the galaxies were formed, which means that their disks evolve in a more passive fashion and in longer timescales, compared to their formation processes. This slow evolution of disks is due to the effect of non-axisymmetric potentials, among which, a bar potential is perhaps the most effective of all. Strong rotating bars redistribute angular momentum and material through the disks of galaxies very effciently, and produce resonances. At these resonances the material is trapped and starts forming stars, creating beautiful rings. However, rings are not the only structure observed in disk galaxies. There are also spiral arms that, might or might not be created by bars. Other type of structures are lenses, which in images appear as flat light distributions with sharp edges, and ringlenses, whose appearance is intermediate between those of rings and lenses. Also, there are barlenses, which are conspicuous lens-like structures embedded in bars, and have been suggested to be the more face-on counterparts of Boxy/Peanut/X-shaped bulges. The study of the physical properties of all these structures provides a tool to investigate the mechanisms that create them and hence, to determine which are the processes that drive the slow evolution of galaxies. In this thesis I study the morphological structures using mainly data from the Spitzer Survey of Stellar Structure in Galaxies (S⁎G), by means of their sizes, orientations, shapes and colors. The S⁎G contains images of ~ 2500 nearby galaxies of all Hubble types at 3.6 and 4.5 Όm, allowing a dust free view of the old stellar population which is subject of the secular evolution. Among the results presented in this thesis and the respective companion papers are the following. A catalog that contains the sizes, ellipticities and position angles of the morphological features in the S⁎G was created. This catalog also includes the measurements of the pitch angles of spiral arms. There is a corroboration of previous results showing that different types of morphological features appear in galaxies with different Hubble stages and bar families, and a confirmation of the resonant nature of rings but also of a high fraction of lenses and ringlenses. There is also an observation indicating that low mass galaxies lack nuclear structures such as nuclear rings due to the lack of inner Lindblad resonances caused by their low central mass concentrations. Observational evidence is presented indicating that a fraction of inner lenses in unbarred galaxies might be former barlenses of which the "thin bar" has probably dissolved or it is too faint to be detected. The sizes of barlenses show a tight linear correlation with those of bars, being the size of the barlens typically half the size of the bar. The study of the optical colors of barlenses reveals their similarity with bars, giving observational evidence that their stellar populations are similar, and distinguishes them from disks and nuclear regions. The orientations of barlenses with respect to that of bars and disks reveal that barlenses are vertically thick structures. All these results support the idea that barlenses are the vertically thick inner parts of bars and hence relate them observationally to Boxy/Peanut/X-shaped bulges. These results and others are published in a series of original papers in which I have collaborated and that are appended at the end of this work

    Tilted outer and inner structures in edge-on galaxies?

    No full text
    corecore