78 research outputs found
A Prospective, Controlled Trial of a Protocol-based Strategy to Discontinue Mechanical Ventilation
Weaning protocols can improve outcomes, but their efficacy may vary with patient and staff characteristics. In this prospective, controlled trial, we compared protocol-based weaning to usual, physiciandirected weaning in a closed medical intensive care unit (ICU) with high physician staffing levels and structured, system-based rounds. Adult patients requiring mechanical ventilation for more than 24 hours were assigned to usual care (UC) or protocol weaning based on their hospital identification number. Patients assigned to UC (n ϭ 145) were managed at their physicians' discretion. Patients assigned to protocol (n ϭ 154) underwent daily screening and a spontaneous breathing trial by respiratory and nursing staff without physician intervention. There were no significant baseline differences in patient characteristics between groups
Investigating the accuracy of FatNav-derived estimates of temporal B0 changes and their application to retrospective correction of high-resolution 3D GRE of the human brain at 7T
Purpose: To investigate the precision of estimates of temporal variations of magnetic field achievable by doubleecho fat image navigators (FatNavs), and their potential application to retrospective correction of 3D GRE-based sequences. Methods: Both head motion and temporal changes of B0 were tracked using double-echo highly-accelerated 3D FatNavs as navigators – allowing estimation of the temporal changes in low spatial order field coefficients. The accuracy of the method was determined by direct comparison to controlled offsets in the linear imaging gradients. Double-echo FatNavs were also incorporated into a high-resolution 3D GRE sequence to retrospectively correct for both motion and temporal changes in B0 during natural and deep breathing. The additional scan time was 5 minutes (a 40% increase). Correction was also investigated using only the first echo of the FatNav to explore the trade-off in accuracy vs scan-time. Results: Excellent accuracy (0.27 Hz, 1.57-2.75 Hz/m) was achieved for tracking field changes and no significant bias could be observed. Artefacts in the 3D GRE images induced by temporal field changes, if present, were effectively reduced using either the field estimates from the double-echo or the first-echo-only from the FatNavs. Conclusion: FatNavs were shown to be an excellent candidate for accurate, fast and precise estimation of global field variations for the tested patterns of respiration. Future work will investigate ways to increase the temporal sampling to increase robustness to variations in breathing patterns
Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci
Repeated Assessment of Exploration and Novelty Seeking in the Human Behavioral Pattern Monitor in Bipolar Disorder Patients and Healthy Individuals
Exploration and novelty seeking are cross-species adaptive behaviors that are dysregulated in bipolar disorder (BD) and are critical features of the illness. While these behaviors have been extensively quantified in animals, multivariate human paradigms of exploration are lacking. The human Behavioral Pattern Monitor (hBPM), a human version of the animal open field, identified a signature pattern of hyper-exploration in manic BD patients, but whether exploratory behavior changes with treatment is unknown. The objective of this study was to assess the sensitivity of the hBPM to changes in manic symptoms, a necessary step towards elucidating the neurobiology underlying BD.Twelve acutely hospitalized manic BD subjects and 21 healthy volunteers were tested in the hBPM over three sessions; all subjects were retested one week after their first session and two weeks after their second session. Motor activity, spatial and entropic (degree of unpredictability) patterns of exploration, and interactions with novel objects were quantified. Manic BD patients demonstrated greater motor activity, extensive and more unpredictable patterns of exploration, and more object interactions than healthy volunteers during all three sessions. Exploration and novelty-seeking slightly decreased in manic BD subjects over the three sessions as their symptoms responded to treatment, but never to the level of healthy volunteers. Among healthy volunteers, exploration did not significantly decrease over time, and hBPM measures were highly correlated between sessions.Manic BD patients showed a modest reduction in symptoms yet still demonstrated hyper-exploration and novelty seeking in the hBPM, suggesting that these illness features may be enduring characteristics of BD. Furthermore, behavior in the hBPM is not subject to marked habituation effects. The hBPM can be reliably used in a repeated-measures design to characterize exploration and novelty seeking and, in parallel with animal studies, can contribute to developing treatments that target neuropsychiatric disease
Can we understand modern humans without considering pathogens?
Throughout our evolutionary history, humankind has always lived in contact with large numbers of pathogens. Some cultural traits, such as sedentarization and animal domestication, have considerably increased new parasitic contacts and epidemic transitions. Here, we review the various phenotypic traits that have been proposed to be affected by the highly parasitic human environment, including fertility, birth weight, fluctuating asymmetry, body odours, food recipes, sexual behaviour, pregnancy sickness, language, religion and intellectual quotient. We also discuss how such knowledge is important to understanding several aspects of the current problems faced by humanity in our changing world and to predicting the long-term consequences of parasite eradication policies on our health and well-being. The study of the evolutionary interactions between humans and parasites is a burgeoning and most promising field, as demonstrated by the recent increasing popularity of Darwinian medicine
A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus
In recent years, methicillin-resistant Staphylococcus aureus
(MRSA) have become a truly global challenge. In addition to the long-known
healthcare-associated clones, novel strains have also emerged outside of the
hospital settings, in the community as well as in livestock. The emergence and
spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an
additional cause for concern. In order to provide an overview of pandemic,
epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates
of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu
Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference
strains from the United States have been genotyped by DNA microarray analysis.
This technique allowed the assignment of the MRSA isolates to 34 distinct
lineages which can be clearly defined based on non-mobile genes. The results
were in accordance with data from multilocus sequence typing. More than 100
different strains were distinguished based on affiliation to these lineages,
SCCmec type and the presence or absence of PVL. These
strains are described here mainly with regard to clinically relevant
antimicrobial resistance- and virulence-associated markers, but also in relation
to epidemiology and geographic distribution. The findings of the study show a
high level of biodiversity among MRSA, especially among strains harbouring
SCCmec IV and V elements. The data also indicate a high
rate of genetic recombination in MRSA involving SCC elements, bacteriophages or
other mobile genetic elements and large-scale chromosomal replacements
A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus
In recent years, methicillin-resistant Staphylococcus aureus
(MRSA) have become a truly global challenge. In addition to the long-known
healthcare-associated clones, novel strains have also emerged outside of the
hospital settings, in the community as well as in livestock. The emergence and
spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an
additional cause for concern. In order to provide an overview of pandemic,
epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates
of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu
Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference
strains from the United States have been genotyped by DNA microarray analysis.
This technique allowed the assignment of the MRSA isolates to 34 distinct
lineages which can be clearly defined based on non-mobile genes. The results
were in accordance with data from multilocus sequence typing. More than 100
different strains were distinguished based on affiliation to these lineages,
SCCmec type and the presence or absence of PVL. These
strains are described here mainly with regard to clinically relevant
antimicrobial resistance- and virulence-associated markers, but also in relation
to epidemiology and geographic distribution. The findings of the study show a
high level of biodiversity among MRSA, especially among strains harbouring
SCCmec IV and V elements. The data also indicate a high
rate of genetic recombination in MRSA involving SCC elements, bacteriophages or
other mobile genetic elements and large-scale chromosomal replacements
Toward a Comprehensive Approach to the Collection and Analysis of Pica Substances, with Emphasis on Geophagic Materials
Pica, the craving and subsequent consumption of non-food substances such as earth, charcoal, and raw starch, has been an enigma for more than 2000 years. Currently, there are little available data for testing major hypotheses about pica because of methodological limitations and lack of attention to the problem.In this paper we critically review procedures and guidelines for interviews and sample collection that are appropriate for a wide variety of pica substances. In addition, we outline methodologies for the physical, mineralogical, and chemical characterization of these substances, with particular focus on geophagic soils and clays. Many of these methods are standard procedures in anthropological, soil, or nutritional sciences, but have rarely or never been applied to the study of pica.Physical properties of geophagic materials including color, particle size distribution, consistency and dispersion/flocculation (coagulation) should be assessed by appropriate methods. Quantitative mineralogical analyses by X-ray diffraction should be made on bulk material as well as on separated clay fractions, and the various clay minerals should be characterized by a variety of supplementary tests. Concentrations of minerals should be determined using X-ray fluorescence for non-food substances and inductively coupled plasma-atomic emission spectroscopy for food-like substances. pH, salt content, cation exchange capacity, organic carbon content and labile forms of iron oxide should also be determined. Finally, analyses relating to biological interactions are recommended, including determination of the bioavailability of nutrients and other bioactive components from pica substances, as well as their detoxification capacities and parasitological profiles.This is the first review of appropriate methodologies for the study of human pica. The comprehensive and multi-disciplinary approach to the collection and analysis of pica substances detailed here is a necessary preliminary step to understanding the nutritional enigma of non-food consumption
- …