384 research outputs found
Elastic and inelastic SU(3)-breaking final-state interactions in B decays to pseudoscalar mesons
We discuss all contributions from Zweig-rule-satisfying SU(3)-breaking final
state interactions (FSIs)in the B -> PP decays (neglecting charmed intermediate
states), where PP=pi pi, pi K, KK, pi eta (eta'), and K eta (eta'). First,
effects of SU(3) breaking in rescattering through Pomeron exchange are studied.
Then, after making a plausible assumption concerning the pattern of SU(3)
breaking in non-Pomeron FSIs, we give general formulas for how the latter
modify short-distance (SD) amplitudes. In the SU(3) limit, these formulas
depend on three effective parameters characterizing the strength of all
non-Pomeron rescattering effects. We point out that the experimental bounds on
the B -> K^+K^- branching ratio may limit the value of only one of these FSI
parameters. Thus, the smallness of the B -> K^+K^- decay rate does not imply
negligible rescattering effects in other decays. Assuming a vanishing value of
this parameter, we perform various fits to the available B -> PP branching
ratios. The fits determine the quark-diagram SD amplitudes, the two remaining
FSI parameters and the weak angle gamma. While the set of all B -> PP branching
ratios is well described with gamma around its expected SM value, the fits
permit other values of gamma as well. For a couple of such good fits, we
predict asymmetries for the B -> K pi, pi^+ eta (eta'), K^+ eta (eta') decays
as well as the values of the CP-violating parameters S_{pi pi} and C_{pi pi}
for the time-dependent rate of B^0(t) -> pi^+ pi^-. Apart from a problem with
the recent B^+ -> pi^+ eta asymmetry measurement, comparison with the data
seems to favour the values of gamma in accordance with SM expectations.Comment: 27 pages, 5 figure
Exploring CP Violation through Correlations in B --> pi K, B_d --> pi^+pi^-, B_s --> K^+K^- Observable Space
We investigate allowed regions in observable space of B --> pi K, B_d -->
pi^+pi^- and B_s --> K^+K^- decays, characterizing these modes in the Standard
Model. After a discussion of a new kind of contour plots for the
system, we focus on the mixing- induced and direct CP asymmetries of the decays
B_d --> pi^+pi^- and B_s--> K^+K^-. Using experimental information on the
CP-averaged B_d --> pi^{+/-}K^{+/-} and B_d --> pi^+pi^- branching ratios, the
relevant hadronic penguin parameters can be constrained,implying certain
allowed regions in observable space. In the case of B_d --> pi^+pi^-, an
interesting situation arises now in view of the recent B-factory measurements
of CP violation in this channel, allowing us to obtain new constraints on the
CKM angle gamma as a function of the B^0_d--\bar{B^0_d} mixing phase
phi_d=2beta, which is fixed through A_{CP}^{mix}(B_d --> J/psi K_S) up to a
twofold ambiguity. If we assume that A_{CP}^{mix}(B_d --> pi^+pi^-) is
positive, as indicated by recent Belle data, and that phi_d is in agreement
with the ``indirect'' fits of the unitarity triangle, also the corresponding
values for gamma around 60 degrees can be accommodated. On the other hand, for
the second solution of phi_d, we obtain a gap around gamma ~ 60 degrees. The
allowed region in the space of A_{CP}^{mix}(B_s --> K^+K^-) and
A_{CP}^{dir}(B_s --> K^+K^-) is very constrained in the Standard Model, thereby
providing a narrow target range for run II of the Tevatron and the experiments
of the LHC era.Comment: 34 pages, LaTeX, 12 figures. More detailed introduction and a few
Comments added, conclusions unchanged. To appear in Phys. Rev.
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Precison Measurements of the Mass, the Widths of Resonance and the Cross Section at GeV
By analyzing the values measured at 68 energy points in the energy region
between 3.650 and 3.872 GeV reported in our previous paper, we have precisely
measured the mass, the total width, the leptonic width and the leptonic decay
branching fraction of the to be MeV, MeV,
eV and , respectively, which result in
the observed cross section nb at MeV. We have also measured for the continuum light hadron production in the
region from 3.650 to 3.872 GeV.Comment: 5 pages, 2 figure
Measurements of the observed cross sections for e+e -> exclusive light hadrons containing K^S_0 meson at \sqrt{s} = 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and of 6.5 pb taken at GeV with the BES-II detector at
the BEPC collider, we measure the observed cross sections for the exclusive
light hadron final states of , ,
, ,
and produced in
annihilation at the two energy points. We set the upper limits on the
observed cross sections and the branching fractions for decay to
these final states at 90% C.L..Comment: 6 pages, 1 figur
- …