195 research outputs found

    Carbon and Nitrogen Economy of 24 Wild Species Differing in Relative Growth Rate

    Full text link

    Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light

    Get PDF
    The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity

    Construction costs, chemical composition and payback time of high- and low-irradiance leaves

    Get PDF
    The effect of irradiance on leaf construction costs, chemical composition, and on the payback time of leaves was investigated. To enable more generalized conclusions, three different systems were studied: top and the most-shaded leaves of 10 adult tree species in a European mixed forest, top leaves of sub-dominant trees of two evergreen species growing in small gaps or below the canopy in an Amazonian rainforest, and plants of six herbaceous and four woody species grown hydroponically at low or high irradiance in growth cabinets. Daily photon irradiance varied 3-6-fold between low- and high-light leaves. Specific leaf area (SLA) was 30-130% higher at low light. Construction costs, on the other hand, were 1-5% lower for low-irradiance leaves, mainly because low-irradiance leaves had lower concentrations of soluble phenolics. Photosynthetic capacity and respiration, expressed per unit leaf mass, were hardly different for the low- and high-light leaves. Estimates of payback times of the high-irradiance leaves ranged from 2-4 d in the growth cabinets, to 15-20 d for the adult tree species in the European forest. Low-irradiance leaves had payback times that were 2-3 times larger, ranging from 4 d in the growth cabinets to 20-80 d at the most shaded part of the canopy of the mixed forest. In all cases, estimated payback times were less than half the life span of the leaves, suggesting that even at time-integrated irradiances lower than 5% of the total seasonal value, investment in leaves is still fruitful from a carbon-economy point of view. A sensitivity analysis showed that increased SLA of low-irradiance leaves was the main factor constraining payback times. Acclimation in the other five factors determining payback time, namely construction costs, photosynthetic capacity per unit leaf mass, respiration per unit leaf mass, apparent quantum yield, and curvature of the photosynthetic light-response-curve, were unimportant when the observed variation in each factor was examine

    How Does Water Availability Affect the Allocation to Bark in a Mediterranean Conifer?

    Get PDF
    Bark thickness is a key structural feature in woody plants in the protection against fire. We used 19 provenances of Pinus halepensis, an obligate-seeder species, in a replicated common garden at two environments contrasting in water availability to assess the interacting effects of site environment and population in the relative allocation to bark, expecting lower allocation at the drier site. Secondly, given the average fire frequency, we analyzed whether trees reached the critical absolute thickness soon enough for population persistence via aerial seed bank. Our analyses indicated that trees at the moister site allocated a rather fixed quantity of resources independent of tree size, and almost all populations reached critical absolute bark thickness to eventually survive fire. In contrast, at the drier site allocation to bark reduced with tree size, and most populations did not reach the critical bark thickness. Populations from areas with higher fire frequency had thicker basal bark, while those from areas with severe droughts and short vegetative periods, had thinner bark. In conclusion, drought-stressed trees have a higher risk to die from fires before achieving reproduction and building a sufficient aerial seed bank

    Fully flexible textile antenna-backed sensor node for body-worn UWB localization

    Get PDF
    A mechanically flexible textile antenna-backed sensor node is designed and manufactured, providing accurate personal localization functionality by application of Decawave's DW1000 Impulse Radio Ultra-Wideband (IR-UWB) Integrated Circuit (IC). All components are mounted on a flexible polyimide foil, which is integrated on the backplane of a wearable cavity-backed slot antenna designed for IR-UWB localization in Channels 2 and 3 of the IEEE 802.15.4-2011 standard (3744 MHz-4742.4 MHz). The textile antenna's radiation pattern is optimized to mitigate body effects and to minimize absorption by body tissues. Furthermore, its time-domain characteristics are measured to be adequate for localization. By combining the antenna and the bendable Printed Circuit Board (PCB), a mechanically supple sensor system is realized, for which the performance is validated by examining it as a node used in a complete localization system. This shows that six nodes around the body must be deployed to provide system coverage in all directions around the wearer. Even without using sleep mode functionalities, the measurements indicate that the system's autonomy is 13.3 h on a 5 V 200 mAh battery. Hence, this system acts as a proof of concept for the joining of localization electronics and other sensors with a full-textile antenna into a mechanically flexible sensor system

    Association of Shoot and Root Responses to Water Deficit in Young Faba Bean (Vicia faba L.) Plants

    Get PDF
    Water deficit may occur at any stage of plant growth, with any intensity and duration. Phenotypic acclimation and the mechanism of adaptation vary with the evolutionary background of germplasm accessions and their stage of growth. Faba bean is considered sensitive to various kinds of drought. Hence, we conducted a greenhouse experiment in rhizotrons under contrasting watering regimes to explore shoot and root traits and drought avoidance mechanisms in young faba bean plants. Eight accessions were investigated for shoot and root morphological and physiological responses in two watering conditions with four replications. Pre-germinated seedlings were transplanted into rhizotron boxes filled with either air-dried or moist peat. The water-limited plants received 50-ml water at transplanting and another 50-ml water 4 days later, then no water was given until the end of the experimental period, 24 days after transplanting. The well-watered plants received 100 ml of water every 12 h throughout the experimental period. Root, stem, and leaf dry mass, their mass fractions, their dry matter contents, apparent specific root length and density, stomatal conductance, SPAD value, and Fv/Fm were recorded. Water deficit resulted in 3–4-fold reductions in shoot biomass, root biomass, and stomatal conductance along with 1.2–1.4-fold increases in leaf and stem dry matter content and SPAD values. Total dry mass and apparent root length density showed accession by treatment interactions. Accessions DS70622, DS11320, and ILB938/2 shared relatively high values of total dry mass and low values of stomatal conductance under water deficit but differed in root distribution parameters. In both treatments, DS70622 was characterized by finer roots that were distributed in both depth and width, whereas DS11320 and ILB938/2 produced less densely growing, thicker roots. French accession Mélodie/2 was susceptible to drought in the vegetative phase, in contrast to previous results from the flowering phase, showing the importance of timing of drought stress on the measured response. Syrian accession DS70622 explored the maximum root volume and maintained its dry matter production, with the difference from the other accessions being particularly large in the water-limited treatment, so it is a valuable source of traits for avoiding transient drought.Peer reviewe

    Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy

    Get PDF
    Data mining depends on the ability to access machine-readable metadata that describe genotypes, environmental conditions, and sampling times and strategy. This article presents Xeml Lab. The Xeml Interactive Designer provides an interactive graphical interface at which complex experiments can be designed, and concomitantly generates machine-readable metadata files. It uses a new eXtensible Mark-up Language (XML)-derived dialect termed XEML. Xeml Lab includes a new ontology for environmental conditions, called Xeml Environment Ontology. However, to provide versatility, it is designed to be generic and also accepts other commonly used ontology formats, including OBO and OWL. A review summarizing important environmental conditions that need to be controlled, monitored and captured as metadata is posted in a Wiki (http://www.codeplex.com/ XeO) to promote community discussion. The usefulness of Xeml Lab is illustrated by two meta-analyses of a large set of experiments that were performed with Arabidopsis thaliana during 5 years. The first reveals sources of noise that affect measurements of metabolite levels and enzyme activities. The second shows that Arabidopsis maintains remarkably stable levels of sugars and amino acids across a wide range of photoperiod treatments, and that adjustment of starch turnover and the leaf protein content contribute to this metabolic homeostasis

    Pitfalls and potential of high-throughput plant phenotyping platforms

    Get PDF
    Automated high-throughput plant phenotyping (HTPP) enables non-invasive, fast and standardized evaluations of a large number of plants for size, development, and certain physiological variables. Many research groups recognize the potential of HTPP and have made significant investments in HTPP infrastructure, or are considering doing so. To make optimal use of limited resources, it is important to plan and use these facilities prudently and to interpret the results carefully. Here we present a number of points that users should consider before purchasing, building or utilizing such equipment. They relate to (1) the financial and time investment for acquisition, operation, and maintenance, (2) the constraints associated with such machines in terms of flexibility and growth conditions, (3) the pros and cons of frequent non-destructive measurements, (4) the level of information provided by proxy traits, and (5) the utilization of calibration curves. Using data from an Arabidopsis experiment, we demonstrate how diurnal changes in leaf angle can impact plant size estimates from top-view cameras, causing deviations of more than 20% over the day. Growth analysis data from another rosette species showed that there was a curvilinear relationship between total and projected leaf area. Neglecting this curvilinearity resulted in linear calibration curves that, although having a high r2 (> 0.92), also exhibited large relative errors. Another important consideration we discussed is the frequency at which calibration curves need to be generated and whether different treatments, seasons, or genotypes require distinct calibration curves. In conclusion, HTPP systems have become a valuable addition to the toolbox of plant biologists, provided that these systems are tailored to the research questions of interest, and users are aware of both the possible pitfalls and potential involved

    How are nitrogen availability, fine-root mass, and nitrogen uptake related empirically? Implications for models and theory

    Get PDF
    We gratefully acknowledge funding from Loyola University Chicago; suggestions for improvement by David Robinson and anonymous peer reviewers; logistical support from K. Erickson; help with maintenance and harvests from O. Urbanski, L. Papaioannou, H. Roudebush, & V. Roudebush; and tissue and substrate analyses from Z. Zhu. The authors have no conflicts of interest to report.Peer reviewedPostprin
    corecore