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Automated high-throughput plant phenotyping (HTPP) enables non-invasive,

fast and standardized evaluations of a large number of plants for size,

development, and certain physiological variables. Many research groups

recognize the potential of HTPP and have made significant investments in

HTPP infrastructure, or are considering doing so. To make optimal use of

limited resources, it is important to plan and use these facilities prudently and

to interpret the results carefully. Here we present a number of points that users

should consider before purchasing, building or utilizing such equipment. They

relate to (1) the financial and time investment for acquisition, operation, and

maintenance, (2) the constraints associated with such machines in terms of

flexibility and growth conditions, (3) the pros and cons of frequent non-

destructive measurements, (4) the level of information provided by proxy traits,

and (5) the utilization of calibration curves. Using data from an Arabidopsis

experiment, we demonstrate how diurnal changes in leaf angle can impact

plant size estimates from top-view cameras, causing deviations of more than

20% over the day. Growth analysis data from another rosette species showed

that there was a curvilinear relationship between total and projected leaf area.

Neglecting this curvilinearity resulted in linear calibration curves that, although

having a high r2 (> 0.92), also exhibited large relative errors. Another important

consideration we discussed is the frequency at which calibration curves need to

be generated and whether different treatments, seasons, or genotypes require

distinct calibration curves. In conclusion, HTPP systems have become a valuable

addition to the toolbox of plant biologists, provided that these systems are

tailored to the research questions of interest, and users are aware of both the

possible pitfalls and potential involved.

KEYWORDS

calibration curve, digital biomass, high-throughput plant phenotyping, leaf mass per
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1 Introduction

For decades, plant growth has been studied by taking non-

destructive measurements such as plant height, along with

destructive measurements such as plant dry mass. Typically, these

assessments involved serial measurements over time, or

comparisons of plants or plots at a ‘final’ harvest (Evans, 1972).

Usually, 3-8 plants per treatment were harvested, or 2-30 genotypes

compared, in a process that could easily take a full day or more for a

single person. However, In the past 15 years, there has been a

significant shift towards high-throughput plant phenotyping

(HTPP). Fully automated systems now screen up to hundreds of

genotypes and thousands of individual plants or field plots using

non-destructive sensors, with the collected data automatically

processed and stored for later use. (Furbank and Tester, 2011;

Fiorani and Schurr, 2013; Tardieu et al., 2017; Lorence and Jimenez,

2022). In controlled conditions, automated phenotyping is often

achieved by bringing individual plants to sensors (Yang et al., 2014;

Al-Tamimi et al., 2016), or by moving sensors to or over the plants

(Granier et al., 2006; Nagel et al., 2012). In the field, sensors are also

brought to plants, either through mobile vehicles (White and

Conley, 2013; Deery et al., 2014) or via drones or other aerial

platforms that fly over field trials (Vargas et al., 2020; Roth et al.,

2022). In all of these cases, automation has enabled a significant

increase in the number of individual plants or plots that can be

processed daily, often by an order of magnitude.

An important driver for the development of HTPP systems has

been the rapid progress in the field of molecular biology. The

extensive expansion and utilization of molecular tools at

continuously decreasing costs have enabled thorough genotypic

characterization of many plant species, cultivars, and genotypes.

Phenotypic characterization, however, still lags behind, first because

it is a time-consuming and often still manual measurement process,

and second because plants of the same genotype can exhibit a range

of different phenotypes, depending on environmental conditions

(Furbank and Tester, 2011; Zavafer et al., 2023). This phenotyping

bottleneck is particularly pronounced when studying traits that are

controlled by multiple genes. In such cases, top-down approaches

like Quantitative Trait Loci (QTL) analysis or Genome-Wide

Association Studies (GWAS), are necessary to identify regions of

the genome that are determining these traits (Gibson, 2018).

However, conducting these analyses requires phenotyping

hundreds of different genotypes, preferably all grown

simultaneously in a common environment. Such analyses greatly

benefit from the automation and standardization provided by

HTPP systems (reviewed in Xiao et al., 2022).

Various technological advancements have facilitated the

development of automated HTPP systems. A wide range of non-

destructive sensors, including digital RGB cameras, hyperspectral,

thermal, and fluorescence cameras, laser scanners, and LIDARs (Liu

et al, 2020) enable repeated measurements of individual plants over

time. This provides a higher resolution for capturing time-related
Abbreviations: HTPP, High-Throughput Plant Phenotyping; MAPE, Mean

Absolute Percentage Error; MdAPE, Median Absolute Percentage Error;

RMSE, Root Mean Square Error; PLA, Projected Leaf Area; TLA, Total Leaf Area.
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phenotypic changes compared to experimental designs where new

plants need to be harvested destructively for each time point

(Poorter and Garnier, 1996; Walter et al., 2007). The use of

automated gantries and transportation systems as well as drones

allow us to minimize the distance between sensors and plants.

Another significant factor is the increased computational power and

improved algorithms that enable efficient image processing, with or

without machine learning (Walter et al., 2015; Dobrescu

et al., 2020).

As mentioned above, HTPP systems encompass a diverse range

of approaches, all centered around non-destructive measurements.

In the years ahead, more and more of these systems will be built to

effectively screen a large number of plants for their size, growth

trajectory, and other traits. However, like any complex equipment,

the use of these platforms also presents challenges and limitations

that may be overlooked by those who have not yet utilized them.

Therefore, before investing in the purchase, construction, and

utilization of these platforms, it is crucial to consider potential

issues that may arise, and how they can be addressed. In the Results

and Discussion section, we share insights gained from our

experience in developing and deploying HTPP systems over the

past 15 years. While our focus is primarily on systems operating in

(semi-)controlled environments, several of the issues discussed will

apply to field phenotyping as well.
2 Materials and methods

Part of the discussion that follows will address the relationship

between non-destructive measurements, such as projected leaf area,

and variables that require destructive analysis, including total leaf

area, shoot biomass, and total plant biomass. We illustrate this part

of the discussion with data from two experiments. In the first

experiment, Arabidopsis thaliana (Col-0) plants were cultivated in a

growth room using a rack equipped with neon tubes (Fluora,

Osram, Munich). The plants were grown in soil (ED73,

Einheitserde, Uetersen, Germany) in a cultivation tray with

adjacent 80 ml cells. After incubating the seeds in the dark at

4°C, they germinated in the tray. The plants were then subjected to a

12-hour day length, a photosynthetic photon flux density (PPFD) of

40-50 mmol m-2 s-1, a day/night temperature of 23/20°C and a

relative humidity (RH) of ca. 55%. Plants were watered from below

when the top-soil was fully dry. Thirty-nine days after sowing, the

plants were imaged six times during the day, with 2-hour intervals.

Screening and image analysis were performed following Walter

et al. (2007). The data from this experiment can be found in

Supplementary Data Sheet A1.

The second experiment involved studying Plantago major,

another rosette-forming species, throughout a significant part of its

growth cycle and included a large number of replicates per harvest

(n=12). The plants were grown hydroponically under two different

CO2 concentrations (350 and 700 µmol mol-1), in growth chambers

with a 12-hour day length, a PPFD of 230-270 mmol m-2 s-1, a day/

night temperature of 20/18°C and a day/night RH of 60/90%. Plants

from both treatments were monitored weekly over a 7-week growth

period. Projected leaf area (PLA) was determined by capturing
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slides with an analogue camera placed at a height of 2 meters. The

slides were projected, plant outlines traced on papers, and those

were subsequently digitized semi-manually using a digitizer (model

9874a, Hewlett Packard, Stanford, CA, USA). Total leaf area per

plant (TLA) was determined using a leaf area meter (LiCor 3100, Li-

Cor Inc, Lincoln, NE, USA) equipped with a conveyor belt system.

The determination of the total dry mass of shoots and roots was

done manually, with plant size varying >300-fold throughout the

course of the experiment. The data for this experiment is sourced

from a previously published study by Poorter et al. (1988) and can

be found in Supplementary Data Sheet 2.

Data were analyzed using R version 4.1 (R Core Team, 2022).

Various calibration curves were established by employing the

function lm, with or without a ln-transformation of the relevant

variables, and with or without a quadratic term for the

explanatory variable.
3 Results and discussion

Before proceeding with the design and implementation of a

high-throughput plant phenotyping (HTPP) system, it is essential

to consider the following questions. Figure 1 shows a schematic

overview of the relevant aspects to be considered.
3.1 What is the specific research need?

HTPP systems are designed based on principles of automation

and standardization. However, several critical aspects must be

considered and discussed in order to effectively design and

implement these systems. These include the required scale of the

experiments, the selection of sensors that will be installed, the

necessary software infrastructure, and the expected return on

investment in terms of financial and human resources. These
Frontiers in Plant Science 03
aspects can only be fruitfully discussed if guided by the question

what purpose the system should serve and what goal(s) one would

like to achieve through this platform. This is even more important

in the case where multiple research groups with diverse interests are

involved, as there is a risk that the intended platform becomes a

compromise that in the end does not satisfy any.
3.2 What are the costs of investment and
maintenance for a phenotyping platform?

HTPP systems involve a complex combination of logistics and

technology, particularly when plants need to be moved to sensors.

Such machines require the use of conveyor belts, gantries, or mobile

robots to transport plants through growth chambers or glasshouses

to an imaging station. At the imaging station, plants are generally

subjected to controlled conditions, such as a consistent light

spectrum and intensity, allowing for a consistent acquisition of

images or other sensor-based data. Additionally, plants in pots or

carriers can be automatically weighed and watered. Measurement

equipment must be linked to large-scale data storage facilities and

databases, in order to store and retrieve the collected measurement

information and other metadata. Clearly, expert knowledge of

automation, logistics, error control, fine mechanics, non-

destructive sensing, image analysis, and database management is

required to build and operate these systems properly. Companies

specializing in these different fields offer to construct customized

machines on-site. The costs of these systems can be substantial.

Prices typically range from approximately €60,000 to €120,000 for

small systems with a lower degree of automation and throughput,

€350,000 – €500,000 for fully automated sensor-to-plant or plant-

to-sensor systems, and up to €3,000,000 for high-end systems with

extensive optimization and automation of the workflow. The costs

vary depending on factors such as the types and number of sensors

used, system size, quality of the product and service provided by the
FIGURE 1

A schematic diagram indicating different aspects of high-throughput plant phenotyping (HTPP) systems that should be considered before purchasing
such a system (in blue) and using it (in brown).
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supplier. In addition, these custom-built facilities require expert

maintenance, including sensor calibration, replacement of worn-

out parts and preventive check-ups. Yearly servicing contracts often

amount to 5-10% of the acquisition price and are necessary for the

duration of system usage.

Given the above considerations, certain laboratories opt to

construct HTPP systems themselves, either utilizing off-the-shelf

products or with the support of robotics companies (Bagley et al.,

2020). Building customized platforms can allow for increased

flexibility (as discussed in section 3.4) and better fit the specific

requirements of the involved labs. However, it is important to

acknowledge that the path to a fully functional machine is

challenging and time-consuming. While the direct hardware costs

may be lower than those of commercial HTPP systems, the

substantial human resources required for the development and

maintenance of such automated systems should not be

underestimated (Reynolds et al., 2019).

There are two additional points to consider regarding personnel

investment. Firstly, it is advisable to involve expert users, project

managers, and engineers throughout the planning and building

phase. This ensures that any necessary compromises that almost

inevitably have to be made during the whole process do not strongly

constrain the desired goals of the end-users. Secondly, operating

these systems can be complex, particularly when troubleshooting

errors, as there are numerous variables to consider within the

plat form software , plat form mechanics and network

communications. Therefore, it is recommended to have an

operational team led by an expert who is responsible for the

platform. This lead expert can receive training from the supplier

or the constructors, and subsequently train all other individuals

who will be utilizing this platform. Clearly, such a person requires

both technological as well as plant biological expertise to effectively

manage and operate the HTPP system.
3.3 What other logistical and infrastructural
adjustments are necessary?

An HTPP platform allows researchers to significantly scale up

their experiments, often by an order of magnitude. This implies that

also an order of magnitude more plants are processed, more

containers have to be filled, more consumables are used, more

electricity and irrigation are required, and additional cleaning has to

be done at the end of the experiment. While these aspects are not

part of the phenotyping platform per se, they contribute to a

significant workload. As a result, there is often a need for

subsequent adjustments to the workflow’s ergonomics, such as

automating tasks like pot filling, seed sowing (Jahnke et al., 2016)

or plant transplantation. Together with the sampling for further

physiological characterization and disinfection or disposal of used

components, they bring about additional planning and investments

on top of those for the platform itself.

Another aspect to consider is the data infrastructure. Given the

massive amount of data generated by HTPP systems, effective

storage and accessibility of data for both short-term and long-

term use are essential. Such utilization of data requires a good
Frontiers in Plant Science 04
documentation of data and metadata, as described in the ‘Minimal

Information About Plant Phenotyping Experiments’ (MIAPPE)

guidelines (Krajewski et al., 2015; Papoutsoglou et al., 2020). Also,

data and metadata should be stored in accordance with the FAIR

principle (findable, accessible, interoperable, and reusable;

Wilkinson et al., 2016) as in GnpIS (Pommier et al., 2019) and as

currently established in research data management infrastructures

like DataPLANT (www.nfdi4plants.de).

Remote support by the different suppliers requires a safe,

secure, and reliable access policy. Moreover, in the analysis of

data from such platforms, there is a growing emphasis on

integrating genotypic and phenotypic data, as well as

incorporating detailed environmental characterization of the

experiments. Bringing all these data together often requires a

considerable a-posteriori effort from trained personnel, which also

needs to be budgeted in advance to make full use of the potential of

these HTPP systems (Reynolds et al., 2019).
3.4 How flexible can or should the
system be?

Automation can replace a considerable amount of tedious

repetitive manual labor, especially when routine operations are

customized to the research question and species of interest.

However, this increased automation often comes at the cost of

reduced flexibility. For instance, a system that is perfectly fit for

small rosette plants like Arabidopsis thaliana, may not be as

suitable for a large species with different architecture, such as Zea

mays. Increased flexibility of the system can be achieved by

planning for modular components that can be interchanged

depending on the prevailing research question. However,

increased flexibility to accommodate the needs of a variety of

researchers also implies that the system becomes increasingly

complicated, with a higher likelihood of failures and more efforts

to solve these problems. A ‘jack-of-all-trades’ system will hardly

provide the same level of detail and raw data resolution across the

entire range of plant sizes and architectures as a dedicated high-

resolution system designed specifically for either small or big

plants, due to limitations imposed by the optical properties of

the sensor and system layout. In those cases, a potential solution

could be to have two smaller and targeted systems, rather than

relying on a one-size-fits-all solution.

Another aspect of flexibility is the expected lifespan of system

components. Technological advancements occur rapidly, and new

sensors, for example, will generally be more powerful and

informative than their predecessors. However, owners of

commercially-acquired phenotyping systems often face problems

in that the software to run the whole system is proprietary to the

company, and therefore not accessible for further development. In

such cases, it is complicated or impossible to integrate new sensors

or apply other modifications to existing HTPP systems. New buyers

are advised to discuss with their suppliers what support they can get

in that respect. Self-builders are suggested to set up their software

interfaces as flexible as possible, to easier adjust their system when

new sensors or updates become available.
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3.5 What constraints does the system
impose on growth conditions?

Plants are strongly influenced by their environment and

different genotypes or species may show varying degrees of

genotype x environment interactions for many of their

phenotypic traits. This becomes particularly critical, because in

most (semi-)controlled environments we impose abiotic conditions

that significantly deviate from the natural conditions plants

experience outdoors (Poorter et al., 2016; Chiang et al., 2020).

Considerations about the location of the HTPP system (growth

chamber, glasshouse, or field) and the range of environmental

conditions provided to the plants are therefore an integral part of

the design process.

Compared to traditional experiments, the use of high-

throughput phenotyping systems often introduces additional

constraints, that can impact the growth environment of the plants

and, consequently, the outcomes of experiments. For instance, in a

typical plant-to-sensor system, the combined weight of plants plus

pots is limited by the strength of the conveyor belt used, as well as

the scales used for gravimetric measurements. This limitation

results in experiments being confined to plants in relatively small

pots with substrates of low specific mass, which clearly affects plant

growth and experimental outcomes (Passioura, 2002; Poorter et al.,

2012). Transportation may also have other consequences. Tall

plants, such as Zea mays, may topple over if the conveyor belts

move too quickly. During transport, leaves of sensitive species (e.g.

Brassica rapa, Hordeum vulgare) can get damaged, causing them to

droop downwards along the pot. To mitigate damage, researchers

may choose to place suitable support structures next to or around

each plant, except in cases where wilting would be a phenotypic trait

of interest. Apart from direct damage, one would also expect

thigmo-morphogenetic responses to occur as a reaction to the

mechanical perturbations during transport of plants, such as

thicker and shorter stems (Anten et al., 2005). However, plant

height was not negatively affected in the experiment of Brien et al.

(2013), and neither was shoot biomass or leaf area in various

experiments (Table 1).
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Fixed distances between cameras/sensors and plants may restrict

the range of plant sizes that can be investigated, thereby limiting the

developmental stages that can be studied in such HTPP systems to

young vegetative plants. A last example pertains to the watering of the

plants. Well-watered containers, especially with peat substrate, often

show algal growth on the soil surface, which hampers the non-

destructive derivation of plant size through image analysis

(Figure 2A). To avoid this complication, researchers may opt to

cover the top of the pots with a plastic sheet of contrasting color

(Junker et al., 2015). Alternatively, for small rosette species like

Arabidopsis, reducing the volume and/or frequency of watering can

keep the topsoil dry for a longer duration. Although this suppresses

algal growth, it also has unknown consequences for the growth rate

and phenotype of the plants. It is recommended to consider a-priori

whether the additional constraints imposed by an HTPP system are

acceptable within the scope of the research question.
3.6 When and how often should the plants
be measured?

Once an operational HTPP system is in place, attention can

shift to the performance of experiments. Given their typical large

scale, careful consideration of experimental design is essential. For a

comprehensive discussion on this topic, the reader is referred to

Thompson et al. (2022). One notable advantage of high-throughput

phenotyping systems is that individual plants (or microplots) can be

measured frequently and non-destructively. This allows for the

repeated measurements of the same plants, enabling the tracking of

their growth and development over time. Such analyses can yield

valuable insights, with a good example discussed in Box 1. However,

in cases where the research question focuses on identifying the best-

performing genotype at the end of the experiment, repeated

measurements may be unnecessary. In those cases, researchers

could also opt for one final destructive harvest, which might be

more simple, cheaper, and more informative, as also illustrated in

Box 1. A lower measurement frequency may also be advantageous if

the measurements have the potential to interfere with plant growth.
TABLE 1 Effect of plant-to-sensor transport on shoot biomass, as based on various experiments carried out in glasshouses.

Reference Mode of
transport Species Measured

variable

Size ratio of shoots
(moving vs. non-
moving plants)

P

Nagel et al. (2020) pneumatically Arabidopsis thaliana LA 0.96 ns

F. Fiorani &
N. Körber (unpubl.)

gantry system Hordeum vulgare FM 0.97 ns

F. Fiorani &
N. Körber (unpubl.)

gantry system Brassica napus FM 1.02 ns

Brien et al. (2013) conveyor belt Triticum aestivum FM 1.03 ns

Junker et al. (2015) conveyor belt Arabidopsis thaliana DM 1.08 *
LA, Leaf area; FM, Fresh mass of the shoot; DM, Dry mass of the shoot. Statistical significance: *, P < 0.05; ns, non-significant. Included are the mode of transport of the plants, the species
investigated, variable measured, the size ratio of shoots of plants that were moved relative to control plants that were not moved, and the statistical significance of these differences in plant mass.
The experiments are ranked based on the observed effect size.
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This is particularly relevant when plants are taken out of their

growth environment for longer-duration measurements, such as

magnetic resonance imaging (MRI) or computer tomography (CT)

scans. A higher measurement frequency then provides better insight
Frontiers in Plant Science 06
into plant development, but may also have a stronger negative effect

on plant growth.

A second point to consider is the time of day when plants will

be measured. When using a drone to fly over an experimental field,

it can capture images of many microplots simultaneously.

Acquiring images or other data for these plots using sensors

mounted on vehicles will take longer. Depending on the type of

measurements taken, it may require minutes or more per microplot.

With plant-to-sensor systems within a glasshouse, where it takes

minutes to move a plant through the imaging station and measure

its characteristics, phenotyping all plants in one experiment could

take a full day. During that period, large changes in environmental

variables, such as light intensity and temperature, may occur, likely

resulting in large variation in physiological variables such as

stomatal conductance and photosynthesis as well. One

morphological trait that can exhibit considerable diurnal variation

is leaf angle (Rosa and Forseth, 1996), which has obvious

implications for the projected leaf area (PLA; Dobrescu et al.,

2017) as used in many HTPP systems. For example, during the

diurnal part of the diel cycle, Arabidopsis plants may increase their

leaf area and biomass by 20% (Wiese et al., 2007). However, in a

similar experiment, PLA values were found to decrease by 18-35%

during the light period (Figures 4A, B, 5), due to upward

movements of leaves and petioles. Consequently, when

conducting consecutive 2D measurements of plants day after day,

it is important to measure them at the same time of day, to avoid

bias caused by the diurnal rhythm of leaf movements. Moreover,

different genotypes or treatments should be blocked into the same

time window, to ensure that no confounding effects occur. One fast

alternative approach is to perform a 3D laser scan (Dornbusch et al.,

2012). Other options include using multiple imaging stations, or

employing a gantry system where sensors are brought to the plants,

enabling parallel measurements of many plants in short time.

In some cases, the research question requires a high frequency

of measurements on the same plants. Examples are physiological

responses of plants following the application of a compound,

exposure to a pathogen, or exposure to abiotic stress (Jansen

et al., 2009; Mahlein et al., 2019). In some species, capturing

images at higher frequencies and analyzing them in almost real-

time can be used to detect the onset of potentially undesired

drought stress during the experiment (Figures 4C, D; Eberius and

Lima-Guerra, 2009; Janni et al., 2019).
3.7 How adequate is the quality control
and data handling?

The amount of information collected from a single experiment

can be substantial, especially when imaging of any kind is involved.

The question is how well we, as experimenters, can handle this vast

quantity of data (Eberius and Lima-Guerra, 2009; Tardieu et al.,

2017). Based on our own experience, we have observed several issues

that can arise during an experiment. Sensors, especially

environmental sensors that are deployed throughout the year, may

have not been calibrated for a long time or show failures of various

kinds during the experimental period. With larger amounts of plants,
FIGURE 2

Examples where unsupervised automated high-throughput
phenotyping may lead to incorrect results. (A) Algal growth resulting
in a mask that is too broad and yields an overestimation of projected
leaf area (PLA). (B) A plant grown out of the image acquisition area,
resulting in an underestimation of PLA. (C) A neighboring plant
growing into the image acquisition area, resulting in an
overestimation of PLA. All pictures depict Arabidopsis thaliana plants
and are masked images, used for measuring PLA by counting the
number of green pixels. These images are for illustrative purposes
only. The scale indicates a length of 1 cm.
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BOX 1 Example of the trade-off between measuring with higher frequency or higher precision.

Here we provide two examples of experiments focusing on root distribution. The first one followed root development non-destructively over time (Nabel et al., 2018).
Seedlings of a woody shrub (Sida hermaphrodita) were grown for 90 days in rhizotrons of 36 x 75 x 2.6 cm in size, where one side consists of transparent acrylic glass. The
researchers placed digestate, which is a residue remaining after anaerobic digestion of biomass to methane, at a specific location in the rhizobox. This location is indicated
by the brown circles in Figures 3A–C. Root growth of the part of the root system close to the transparent side of the rhizobox was monitored by regularly capturing images
(Nagel et al., 2012). These images showed that plants strongly avoided the digestate patch in the first 60 days of the experiment (Figures 3A, B). However, roots strongly
proliferated into this patch of nutrients later in time (Figure 3C). In this case, the timing proved to be an essential aspect of how these plants reacted to the treatment.
Although these analyses of root distribution are still challenging for computers and often need human supervision, the effort in this case proved worthwhile for
understanding the timing of root responses.

An alternative approach was followed by Singh et al. (2010; Figure 3D). They grew two Sorghum genotypes in rhizotrons measuring 120 x 240 x 10 cm.When it comes
to selecting, for example, the best-performing genotypes of a panel of genotypes, an evaluation at the end of the experiment could be as informative as a complete analysis
over time. If this is the case, researchers may also opt for alternative and cheaper set-ups, such as rhizoboxes that are not integrated into automated HTPP systems. Those
rhizoboxes could have larger dimensions and allow a wider range of root substrates. By pushing a pinboard into one of the sides before washing away the soil with water,
the distribution of a whole root system can be characterized, rather than only those roots close to the acrylic glass (Singh et al., 2010; Figures 3D, E).

The dilemma faced by researchers in these cases is whether it is more informative to have estimated data over the course of the experiment for only a portion of the
root system, as provided by automated rhizotron systems, or to have more precise data capturing the entire root system but only at the end of the experiment.
FIGURE 3

(A–C) Root distribution of Sida hermaphrodita plants in rhizotron boxes with a localized depot of digestate, indicated by the brown circle. (D) Root
distribution in a rhizobox at the end of an experiment after the soil has been removed. Figures (A–C) are adapted from Nabel et al. (2018) and show
in false colors ranging from dark blue to bright red the number of rhizotrons (out of 10 in total) where roots were observed for each x-y location in
the rhizotron. (A) 30 days, (B) 60 days and (C) 90 days after the start of the experiment. Figures (D, E) show the root systems of two Sorghum
bicolor genotypes at the 12th-leaf stage (ca. 6-8 weeks after germination) in an experiment similar to that described in Singh et al. (2010). The white
bars indicate a length of 10 cm. Picture credits Figures (A–C): Moritz Nabel, Forschungszentrum Jülich, Germany. (D, E): Vijaya Singh, University of
Queensland, Australia.
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problems might more easily go undetected. For example, some plants

could topple over or do not receive adequate watering. In image

analysis systems, leaves from neighboring plants might appear in

pictures taken, photos might not cover the full plant, or masking

might not function properly (Figures 2B, C). These errors are easily

noticed if they occur frequently, but in the midst of hundreds of

plants, thousands of pictures, and tens of thousands of other collected

data points, such errors can easily go unnoticed. Thorough data

inspection and double-checking for mistakes are therefore crucial, but

can be cumbersome without the assistance of digital tools. Dedicated

software programs for data visualization and targeted image retrieval,

such as Azure, iRods, PHIS, Fairdom, Zegami, or similar solutions,

enable fast selection of images of specific plants over time, aiding in

the identification of potential outlier data. Automated quality control

procedures should routinely flag instances where parts of leaves are

outside the picture, or leaves of neighboring plants are distorting the

results. Graphical analysis of data distribution, time courses, or dose-

response curves can provide insights into potential issues with

specific plants or entire groups of plants (Xu et al., 2015). This is

particularly useful in ongoing experiments, when possible problems

can be detected and solved by data analysis at an early stage. Real-

time reporting, along with easy and user-friendly (remote) access to
Frontiers in Plant Science 08
visualizations and resulting analyses, facilitates early detection and

problem-solving.
3.8 How informative are the selected
proxies for the actual variables of interest?

For decades, scientists have relied on spectrophotometric

measurements to asses enzyme activity, wet digestion or pyrolysis

for leaf nitrogen determination, infra-red gas analyzers to

determine photosynthesis, and manual harvesting to measure

plant biomass. However, these conventional measurements all

require significant manual effort, and are therefore not suitable

for high-throughput phenotyping. Efforts have been made to

automate such measurements (e.g. Gibon et al., 2004; Gomez

et al., 2010), but challenges remain in automating processes such

as grinding and weighing, particularly under low-temperature

conditions to prevent chemical degradation (Hall et al., 2022). In

search of alternatives, scientists have explored measurements that

are easier to perform, yet still provide valuable information. For

example, leaf nitrogen content can be estimated non-destructively

using multispectral analysis (Ye et al., 2020), photosynthesis can be
FIGURE 4

(A, B) The same Arabidopsis thaliana plant photographed (A) in the morning, with a low leaf angle and (B) at the end of the day with a much higher
leaf angle. The yellow and orange circles indicate the positions of the youngest full-grown leaves which exhibit the largest change in leaf angle. (C,
D). The same plant photographed (C) before and (D) after the onset of water stress, which resulted in leaf wilting. These images are for illustrational
purposes only. The scale indicates a length of 1 cm.
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assessed through fluorescence, and biomass by counting green

pixels in plant images.

Are these proxies informative enough? The chlorophyll

fluorescence parameter (Fv/Fm), for instance, is often measured,

but in many cases variation in Fv/Fm does not reflect variation in the

actual rate of photosynthesis (Poorter et al., 2019). The electron

transport rate offers a better approximation, but still does not

capture the true rate of C-fixation (Kalaji et al., 2014). Similarly,

estimating digital biomass based on the number of green pixels in

an image can provide an indication of plant size, but does not give

the actual biomass, or information on biomass allocation to leaves,

stems, and roots. This lack of information hampers comparisons

across experiments, platforms, and the published literature.

However, advancements in machine learning techniques now

enable the segmentation of 2D or 3D images into leaves and

stems (Golbach et al., 2016; Jin et al., 2019; Shi et al., 2019), so far

only for smaller and/or specific species. Moreover, combined shoot

and root phenotyping is feasible in rhizotron or agar-based

platforms (Nagel et al., 2012; Nagel et al., 2020). These

developments hold the potential to extract more comprehensive

information from these photographs or raw sensor data.

In all cases, users must maintain a critical approach to their

data, particularly when changes in plant morphology occur. A clear

example is observed in drought-stressed plants where a loss in

turgor can result in leaf rolling or wilting, leading to a noticeable

decrease in projected leaf area (PLA; Figures 4C, D), while actual

dry biomass is little affected. Even when the variable of interest is

directly provided by sensors, it is wise to verify the definitions used.

For one researcher, plant height may be the distance from the shoot

basis to the highest plant part, for another it could be the distance

from the basis to the apical meristem. In some non-destructive

systems, a more statistical approach is taken, where this variable is

defined as the average value of the pixels (or voxels) from the 80th

till the 90th percentile with respect to height (Kjaer and Ottosen,

2015). Ideally, these definitions are included in the meta-data

provided by the HTPP system.
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3.9 Are non-destructive
measurements sufficient?

The phenotype of plants is multifaceted, composed of hundreds

of variables related to anatomy, morphology, chemical composition,

carbon and water economy, growth, as well as reproduction

(Lambers and Oliveira, 2019; Poorter et al., 2022; Zafaver et al.,

2023). While some of these variables can be estimated non-

destructively, the majority of plant traits require destructive

sampling or harvesting. Consequently, HTPP systems, which are

primarily non-destructive by nature, can only cover a subset of the

phenotypic traits that researchers would ideally like to measure.

However, by bringing sensors to the plant, additional

measurements may become feasible. For example, continuous

monitoring of transpiration over a plant’s lifespan in real time

can be achieved by placing plants on a balance (Tardieu et al., 2017;

Dalal et al., 2020). Nevertheless, many other traits can only be

measured through destructive sampling or harvesting, which

necessitates additional planning and manpower.

A highly promising advancement is the development of robots

capable of approaching a plant and taking a leaf punch from a

specific leaf blade (Alenyà et al., 2013; Foix et al., 2018). By

promptly storing these samples in liquid nitrogen, a broad array

of relevant biochemical analyses can be conducted, including the

assessment of key metabolites and RNA expression levels (Hall

et al., 2022).
3.10 What calibration curve is required?

In certain cases, well-calibrated phenotyping equipment can

directly provide data on physiologically relevant variables of

interest. For instance, measurements such as leaf temperature or

Fv/Fm yield output that is readily biologically interpretable and can

be easily related to published work in the literature. In other cases,

however, additional calibration is required to transform acquired
FIGURE 5

Measured Projected Leaf Area (PLA) over a day for Arabidopsis thaliana plants grown in a growth chamber. The values for each plant are normalized
to the maximum value measured during the diurnal part of the day-night cycle. The dots indicate mean values, and the ‘error bars’ represent the 5%
and 95% percentiles (n = 44).
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data (e.g., number of green pixels) into biological meaningful

variables (e.g., shoot dry mass). In such cases, a common

procedure involves periodic measurements of a subset of plants,

initially through non-destructive imaging, and subsequently

destructively by determining leaf area, shoot dry mass or other

traits of interest. An example is shown in Figure 6, where the

projected leaf area of Plantago major plants grown under different

[CO2] levels was assessed non-destructively through imaging,

followed by destructive measurement of total leaf area and shoot

biomass (see Material & Methods).

The first step in establishing a calibration curve involves

plotting the variable of interest against the measured variable. We

illustrate this process with a graph that depicts the relationship

between total leaf area (TLA) and projected leaf area (PLA). The

graph demonstrates that for small plants (< 30 cm2 in this case, for

plants up to 4 weeks old), TLA and PLA exhibit largely similar

values. However, in larger plants, TLA increases at a faster rate than

PLA, as newly-grown leaves will inevitably overlap partially or even

fully with older leaves. In the experiment presented here, the TLA at

the final harvest was approximately 2.3 times larger than the

corresponding PLA, with no clear difference between plants of the

two treatments.

The second step in constructing the calibration curve involves

computing a regression line. Taken over both treatments, a linear

regression yielded highly significant results (P < 0.001). Based on

the calculated r2, we found that variation in PLA accounted for 92%

of the variation in TLA. While this initial outcome may appear very

satisfactory, further examination showed that the regression line

underestimated TLA at very small and high TLA values, while

overestimating TLA at intermediate PLA values. Given the gradual

increase in leaf overlap with plant size, a curved relationship

appears to be a more appropriate model. Subsequent analysis

with a second-order polynomial confirmed the high significance

(P<0.001) of the quadratic term, resulting in a slightly improved

r2 (Table 2).

Although many users are satisfied with the aforementioned

correlative approach and the high r2 values (e.g. Nagel et al., 2012;

Vadez et al., 2015; Banerjee et al., 2020), certain aspects warrant

further inspection. For instance, the growth of young plants often

follows an exponential pattern, characterized by smaller absolute

size increases in small plants, and larger increases as plants grow

bigger. As a consequence, in the experiment we are discussing with

weekly harvests, the first half of the calibration curve is determined

by 82% of the observations, while the remaining 18% contribute to

the second half. To achieve a more balanced distribution, we could

log-transform both PLA and TLA. In our experiment, this log-

transformation resulted in the first half of the curve containing 32%

of the data, with the remaining 68% in the second half (Figure 6B).

Although the distribution is still not perfectly equal, it improved

considerably compared to the non-transformed dataset. Performing

a linear regression on the log-transformed data yielded a highly

significant fit, with an r2 of 0.986. However, it is important to

acknowledge the biological phenomenon of overlapping leaves.

Incorporating a quadratic term into the equation further
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improved the fit, resulting in an r2 value of 0.989. Clearly, it pays

to analyze which function is most appropriate, and whether log-

transformation of the data and/or non-linear fits can provide a

more robust basis for the calibration curve than a standard linear

regression on non-transformed data.
3.11 How accurate is the calibration curve?

The coefficient of determination (r2) is a convenient parameter

to describe the goodness of fit of a statistical relationship between

variables, and because it (generally) scales between 0 and 1, it allows

easy comparisons across various experiments (Chicco et al., 2021).

The calibration curves discussed in the previous section all exhibit

relatively high r2 values (Table 2), but does this r2 truly represent the

desired accuracy? Different expressions of plant size, such as leaf

number, leaf area, and total biomass, are generally well correlated.

How well the calibration curve works depends partly on the

appropriateness of the chosen proxy trait. For instance: a top-

view picture might provide more information for a rosette plant,

while side views or views from different angles could be more

informative for species with a single stem. Furthermore, it is

important to note that r2 provides information on the total

variation in the y-variable that can be explained by the total

variation in the x-variable. Hence, in monotonically increasing

relationships like the one depicted in Figure 6, the larger the span

in size in both x and y, the higher the r2 will be. If we restrict the

calculation to plants with a PLA >100 cm2 instead of considering all

data, the r2 value decreases from 0.92 to 0.76. Consequently, a high

r2 for a calibration curve like the one shown in Figure 6, indicates

that we are able to effectively distinguish between small and large

plants. However, if a researcher’s prime interest lies in

understanding the variation in final size across genotypes, relying

solely on the r2 of the full calibration curve may provide a somewhat

misleading sense of accuracy.

An alternative measure to assess the goodness of fit is the root

mean square error (RMSE), which quantifies the average distance

in the y-direction between the observed data points and the fitted

line. It gives more weight to points that are further away from the

line, compared to those that are closer (Hodson, 2022). The

advantage of RMSE is that, all else being equal, it is not

influenced by the total variation range in x and y, as is the case

with r2. Additionally, RMSE provides an absolute error in the units

of the Y-axis. If the residuals follow a normal distribution, it

informs the researcher that there is a 68% probability that the

estimated total leaf area (TLA) deviates by less than the RMSE from

the true TLA. However, RMSE may not be suitable for calibration

curves that cover a wider range of plant sizes, as the error is not

equal for plants of all sizes. For instance, an RMSE of 5 cm2 may

represent a minor deviation for a plant of 1000 cm2, but a huge

variation for a plant with a leaf area of 1 cm2.

To assess the accuracy of the estimates, we calculated for each

plant the absolute percentage error. This involved determining the

absolute difference between the actual TLA, and the TLA value
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estimated from the calibration curve, normalized to the actual TLA

measured. These values ranged from nearly 0%, indicating a highly

accurate estimate, to over 1000% in the specific case of very young

plants where TLA was fitted with a straight line across all plant sizes

(Figure 7A). In the last case, the actual TLA value was 1 cm2,

whereas the estimated TLA value was calculated to be -10 cm2. This

illustrates that even an r2 value exceeding 0.90 does not necessarily

guarantee accurate estimates for every individual plant. The median

absolute percentage error (MdAPE) serves as a useful summary

descriptor for non-normally distributed data. For the linear

calibration curve, MdAPE was approximately 37% (Table 2;

Figure 7A), indicating that the accuracy fell short of our

expectations. However, when utilizing a quadratic fit with log-log
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transformed values, the MdAPE decreased to 11%, signifying a

substantial improvement in accuracy. Additionally, in the quadratic

fit, MdAPE values were lower for smaller compared to larger ones

(Figure 7B), which is logical given the increased leaf overlap in

larger plants.

The mean absolute percentage error (MAPE) is increasingly

utilized in the field of high-throughput plant phenotyping (e.g.

Paproki et al., 2012; Paulus, 2019; Rossi et al., 2022). However, given

the log-normal distribution of these data, we advocate for the use of

the median absolute percentage error (MdAPE) as a more

informative measure of the general accuracy. By employing the

MdAPE, we aim to capture a representative summary of the actual

accuracy, rather than relying solely on the r2 of a calibration curve.
BA

FIGURE 6

Relationship between projected leaf area and total leaf area of Plantago major plants harvested over an 8-week period and plotted on (A) linear or
(B) logarithmic scales. Blue circles represent plants grown at low [CO2] (350 µL L-1), and orange triangles representplants grown at high [CO2] (700
µL L-1). The grey dotted line represents the 1:1 relationship between TLA (Total Leaf Area) and PLA (Projected Leaf Area), the green dashed line
represents the linear fit through the data, and the black continuous line shows the quadratic fit. The vertical brown line indicates where the divide is
between the 50% smaller and 50% larger plants, based on PLA.
TABLE 2 Characterization of different calibration curves for estimating total leaf area (TLA) from projected leaf area (PLA).

lin qua Log(lin) Log(qua)

P-value for a *** ns *** ***

P-value for b *** *** *** ***

P-value for c – *** – ***

Adj. r2 0.920 0.926 0.986 0.989

Df for the error term 162 161 162 161

RMSE (cm2) 53.9 51.6 29.9 † 27.3 †

MdAPE (%) 38 25 17 † 12 †
Adj. r2: adjusted r2; df: degrees of freedom; RMSE: Root Mean Square Error; MdAPE: the Median values of the Absolute Percentage Error. Significance levels: ***, P < 0.001. Equations are of the
form y = a + bx for a linear polynomial (lin) or y = a + bx + cx2 for a quadratic polynomial (qua). The last two columns are for x and y data that were log10-transformed, with the fields marked by a
† calculated after back-transformation to the original scale.
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3.12 How many calibration curves
are required?

So far, we have considered a common calibration curve for both

low and high CO2 plants. For the relationship between projected

leaf area (PLA) and total leaf area (TLA), this approach may seem

reasonable as long as the treatment does not influence leaf angle or

any other aspect of leaf display. However, what would happen if we

aim to use PLA to estimate shoot biomass (Figure 8A)? The

relationship between leaf dry mass and leaf area is known to shift,

as plants exposed to elevated CO2 almost invariably exhibit higher

leaf mass per area (LMA; Poorter et al., 2022). Using quadratic

polynomials on log-transformed PLA and shoot dry mass, we

indeed found different curves (Figure 8B). They indicated that for

a given PLA, elevated CO2 plants were 20-30% heavier, although

not for the smallest or largest plants. These findings align with the

LMA data, which also showed LMA averages to be 20-30% heavier,

except for the first and last harvest (cf. Figure 8B in Poorter et al.,

1988). However, statistically, this did not show up as a significant

effect, neither for CO2 as a main factor nor for the interaction of

CO2 with the linear and quadratic components of PLA.

Having different calibration curves for different treatments, or

maybe for different genotypes, can be quite inconvenient, as it

requires more manual harvesting, partially nullifying the intended

savings in human effort. What could we do about that? A well-cited

method paper by Golzarian et al. (2011) discussed the phenotyping

aspects of calibration curves, using the example of an experiment

where plants were exposed to salinity or to control conditions. The
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study found that the two calibration curves were significantly

different, with salt-stressed plants exhibiting higher biomass

estimates for a given number of pixels compared to control

plants. That would fit with the general understanding that salt

stress increases leaf mass per area (LMA; Poorter et al., 2009;

Kamanga et al., 2023). Golzarian et al. (2011), however, reasoned

that salt-stressed plants were smaller, and considered them to be of

‘younger’ age. By adding the factor age to the equation, a single

calibration function could be achieved for plants of both treatments.

However, this approach mixes plant ontogeny with the direct effects

of salinity, and is likely not broadly valid, especially when multiple

treatments with varying salinity concentrations would be involved.

Consequently, if the treatment of interest affects LMA, leaf angle, or

other relevant morphological parameters, different calibration

curves for different treatments may indeed be unavoidable.

Another important question to consider is the validity of a

calibration curve that has been developed for a particular species,

and whether it can be applied to other experiments involving the

same species. In growth chambers, where light and temperature stay

fixed to the same level, the transferability of a calibration curve

seems more likely compared to glasshouses or field settings, where

seasonal variation in light and temperature may strongly impact

both LMA and stem thickness (and consequently stem mass per

projected area). To use HTPP systems more effectively, calibration

curves deserve more attention than they got so far. As is custom in

many other laboratory methods, it might be good to regularly

validate the measuring pipeline with a couple of reference samples

that are measured using destructive methods.
BA

FIGURE 7

(A) Boxplot characterizing the distribution of the Absolute Percentage Error (APE) in the estimate of Total Leaf Area (TLA) from the measurements of
Projected Leaf Area (PLA), using four different calibration curves. (B) Absolute Percentage Error in the estimate of Total Leaf Area using a log-
quadratic calibration curve plotted against Projected Leaf Area. In (A), boxplots indicate the 5th, 25th, 50th, 75th and 95th percentile of the APE values,
taken over all plants and treatments. lin, linear regression; qua, quadratic regression; loglin, linear regression through the log10-transormed value of
TLA and PLA; logqua, quadratic regression through the log10-transformed values. In (B), blue circles represent plants grown at low [CO2] (350 µL L-1),
and orange triangles represent high [CO2]-grown plants (700 µL L-1). The regression line passes through all points, and is significantly (P<0.001)
different from zero, with an adjusted r2 of 0.15.
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3.13 How many replicates per genotype
or treatment?

Plants grown singly in pots may show quite some variability in

plant mass or other traits, which can negatively impact the statistical

power to detect differences between genotypes or treatments

(Poorter and Garnier, 1996). When planning the size of an HTPP

system, it is important to consider not only the number of species or

genotypes to be tested, but also the number of replicates per

genotype that will be required. Genome-wide association studies

(GWAS) or Quantitative Trait Loci (QTL) experiments often

benefit more from including additional genotypes rather than

increasing the number of replicates per genotype (Zou et al.,

2006). If treatments are compared across many genotypes, the

large number of plants grown in HTPP systems will provide

sufficient statistical power for general conclusions. However, when

researchers are also interested in testing specific differences between

individual genotypes, the number of replicates becomes more

critical. This is particularly true when a calibration curve is used

to estimate the values of the trait of interest. Calibration curves with

low r2 and high MdAPE introduce additional variability on top of

the inherent variation that will already be present among plants. In

the case of the CO2 experiment, a t-test conducted at the final

harvest revealed that the actual shoot dry mass for the two

treatments was only marginally significant (P = 0.10). However,

the difference was far further from significance when the shoot dry

mass estimates based on PLA values were used (P = 0.24). In

situations where HTPP system users are interested in specific

contrasts, the utilization of calibration curves implies that they

may need to include more replicates than in traditional experiments

to achieve the same level of statistical power.
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3.14 How often do you need to repeat
an experiment?

Despite the robotized and computerized systems, HTPP

experiments often push limits and compare large amounts of

genotypes in a standardized manner. In as far as these

experiments have a background in (eco)physiological approaches,

with single plants growing in pots under controlled conditions, data

from a single experiment is often considered sufficient for

publication. However, in agriculture it is generally regarded as the

gold standard to repeat an experiment in multiple years or

locations, before any importance is attached to the results.

Possibly, HTPP in controlled conditions can be seen as the

initial, important step in a two-phase approach. During this first

step, a wide range of genotypes or species can be tested, either in

their own right or in combination with specific treatment factors.

Without being overly concerned about genotypic effects on

calibration curves (as mentioned in point 12), this step can be

used to identify the worst-performing and best-performing

genotypes, simply based on green pixel counts or similar proxy

traits (‘forward phenomics’ sensu Mir et al., 2019; cf. Merlot et al.,

2002). The most extreme and interesting genotypes, for example

those carrying contrasting alleles for important QTLs can then be

further investigated in a targeted experiment. This subsequent

phase would involve non-destructive phenotyping complemented

by more labor-intensive physiological analyses such as gas exchange

and chemical characterization on the one hand, and destructive

harvesting of both shoot and root biomass on the other hand

(Poudyal et al., 2018). Such a two-step approach would also be

helpful in screening a wide range of germplasm for

contrasting genotypes.
BA

FIGURE 8

Relationship between projected leaf area and shoot dry mass of Plantago major, grown at low {CO2] (350 µL L-1) and high [CO2] (700 µL L-1). (A)
Combined data for plants of both treatments; (B) calibration curves separately calculated for plants from each [CO2]. All curves exhibited highly
significant linear and quadratic components (P < 0.001) and r2 > 0.978.
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4 Conclusions and outlook

In this paper, we discussed a number of issues relevant to

consider during the design and implementation phases of high-

throughput plant phenotyping (HTPP) systems. A crucial aspect of

an HTPP platform is its alignment with the specific research

questions of interest and its careful design, both from the

hardware and the workflow perspective. Different treatments

applied to the shoot environment (such as light, CO2,

temperature) are often more complicated to implement, as this

requires various growth environments all integrated into one HTPP

system, or replicated HTPP systems, which is feasible but expensive.

Treatments that can be applied to separate pots in the same location

(such as drought, nutrients, salinity) are relatively easier to

implement and amenable to computerized control. Additionally,

efforts must be made to effectively address unforeseen problems

and errors.

Regardless of the treatment approach, it is important to

acknowledge that investment costs and maintenance requirements

for most phenotyping systems are substantial. This is in part

because the systems build now are often highly customized. If

over time researchers will settle for more standardized systems and

sensors, platform costs and time spend on complications will

hopefully decrease.

Obtaining meaningful information from HTPP experiments

requires to carefully consider the selection of meaningful proxy

traits that enable us to answer the research questions at hand.

Attention should also be paid to well-designed and regularly

validated calibration curves, if necessary. An alternative strategy is

to use HTPP systems as a good opportunity for prescreening. Such a

prescreening would then be followed by an experiment focusing on

a limited number of the most interesting genotypes. It allows to

measure not only the proxy variables easily acquired by the

phenotyping system (‘soft’ traits), but also the physiological ‘hard-

to-get’ traits that provide valuable insights and a more

comprehensive understanding of observed differences in

plant performance.
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