31 research outputs found

    New HARPS and FEROS observations of GJ1046

    Full text link
    In this paper we present new precise Doppler data of GJ1046 taken between November 2005 and July 2018 with the HARPS and the FEROS high-resolution spectographs. In addition, we provide a new stellar mass estimate of GJ1046 and we update the orbital parameters of the GJ1046 system. These new data and analysis could be used together with the GAIA epoch astrometry, when available, for braking the sini\sin i degeneracy and revealing the true mass of the GJ1046 system.Comment: 2 pages, 1 figure, 1 table with RV data (available only in the Astro-PH version of the paper), Accepted by RNAA

    Gamma-Linolenic and Stearidonic Acids Are Required for Basal Immunity in Caenorhabditis elegans through Their Effects on p38 MAP Kinase Activity

    Get PDF
    Polyunsaturated fatty acids (PUFAs) form a class of essential micronutrients that play a vital role in development, cardiovascular health, and immunity. The influence of lipids on the immune response is both complex and diverse, with multiple studies pointing to the beneficial effects of long-chain fatty acids in immunity. However, the mechanisms through which PUFAs modulate innate immunity and the effects of PUFA deficiencies on innate immune functions remain to be clarified. Using the Caenorhabditis elegans–Pseudomonas aeruginosa host–pathogen system, we present genetic evidence that a Δ6-desaturase FAT-3, through its two 18-carbon products—gamma-linolenic acid (GLA, 18:3n6) and stearidonic acid (SDA, 18:4n3), but not the 20-carbon PUFAs arachidonic acid (AA, 20:4n6) and eicosapentaenoic acid (EPA, 20:5n3)—is required for basal innate immunity in vivo. Deficiencies in GLA and SDA result in increased susceptibility to bacterial infection, which is associated with reduced basal expression of a number of immune-specific genes—including spp-1, lys-7, and lys-2—that encode antimicrobial peptides. GLA and SDA are required to maintain basal activity of the p38 MAP kinase pathway, which plays important roles in protecting metazoan animals from infections and oxidative stress. Transcriptional and functional analyses of fat-3–regulated genes revealed that fat-3 is required in the intestine to regulate the expression of infection- and stress-response genes, and that distinct sets of genes are specifically required for immune function and oxidative stress response. Our study thus uncovers a mechanism by which these 18-carbon PUFAs affect basal innate immune function and, consequently, the ability of an organism to defend itself against bacterial infections. The conservation of p38 MAP kinase signaling in both stress and immune responses further encourages exploring the function of GLA and SDA in humans

    Up-regulation of BLT2 is critical for the survival of bladder cancer cells

    No full text
    The incidence rates of urinary bladder cancer continue to rise yearly, and thus new therapeutic approaches and early diagnostic markers for bladder cancer are urgently needed. Thus, identifying the key mediators and molecular mechanisms responsible for the survival of bladder cancer has valuable implications for the development of therapy. In this study, the role of BLT2, a receptor for leukotriene B4 (LTB4) and 12(S)-hydroxyeicosatetraenoic acid (HETE), in the survival of bladder cancer 253J-BV cells was investigated. We found that the expression of BLT2 is highly elevated in bladder cancer cells. Also, we observed that blockade of BLT2 with an antagonist or BLT2 siRNA resulted in cell cycle arrest and apoptotic cell death, suggesting a role of BLT2 in the survival of human bladder cancer 253J-BV cells. Further experiments aimed at elucidating the mechanism by which BLT2 mediates survival revealed that enhanced level of reactive oxygen species (ROS) are generated via a BLT2-dependent up-regulation of NADPH oxidase members NOX1 and NOX4. Additionally, we observed that inhibition of ROS generation by either NOX1/4 siRNAs or treatment with an ROS-scavenging agent results in apoptotic cell death in 253J-BV bladder cancer cells. These results demonstrated that a 'BLT2-NOX1/4-ROS' cascade plays a role in the survival of this aggressive bladder cancer cells, thus pointing to BLT2 as a potential target for anti-bladder cancer therapy
    corecore