138 research outputs found

    Electron scattering in atomic force microscopy experiments

    Get PDF
    It has been shown that electron transitions, as measured in a scanning tunnelling microscope (STM), are related to chemical interactions in a tunnelling barrier. Here, we show that the shape and apparent height of subatomic features in an atomic force microscopy (AFM) experiment on Si(111) depend directly on the available electron states of the silicon surface and the silicon AFM tip. Simulations and experiments confirm that forces and currents show similar subatomic variations for tip-sample distances approaching the bulk bonding length.Comment: 5 pages and 4 figure

    Focussing quantum states

    Get PDF
    Does the size of atoms present a lower limit to the size of electronic structures that can be fabricated in solids? This limit can be overcome by using devices that exploit quantum mechanical scattering of electron waves at atoms arranged in focussing geometries on selected surfaces. Calculations reveal that features smaller than a hydrogen atom can be obtained. These structures are potentially useful for device applications and offer a route to the fabrication of ultrafine and well defined tips for scanning tunneling microscopy.Comment: 4 pages, 4 figure

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    Distance dependence of the phase signal in eddy current microscopy

    Full text link
    Atomic force microscopy using a magnetic tip is a promising tool for investigating conductivity on the nano-scale. By the oscillating magnetic tip eddy currents are induced in the conducting parts of the sample which can be detected in the phase signal of the cantilever. However, the origin of the phase signal is still controversial because theoretical calculations using a monopole appoximation for taking the electromagnetic forces acting on the tip into account yield an effect which is too small by more than two orders of magnitude. In order to determine the origin of the signal we used especially prepared gold nano patterns embedded in a non-conducting polycarbonate matrix and measured the distance dependence of the phase signal. Our data clearly shows that the interacting forces are long ranged and therefore, are likely due to the electromagnetic interaction between the magnetic tip and the conducting parts of the surface. Due to the long range character of the interaction a change in conductivity of Δσ=4,5107(Ω\Delta\sigma=4,5\cdot10^{7} (\Omegam)1)^{-1} can be detected far away from the surface without any interference from the topography

    Moir\'e patterns on STM images of graphite from surface and subsurface rotated layer

    Full text link
    We have observed with STM moir\'e patterns corresponding to the rotation of one graphene layer on HOPG surface. The moir\'e patterns were characterized by rotation angle and extension in the plane. Additionally, by identifying border domains and defects we can discriminate between moir\'e patterns due to rotation on the surface or subsurface layer. For a better understanding of moir\'e patterns formation we have studied by first principles an array of three graphene layers where the top or the middle layer appears rotated around the stacking axis. We compare the experimental and theoretical results and we show the strong influence of rotations both in surface and subsurface layers for moir\'e patterns formation in corresponding STM images.Comment: 5 pages, 6 figure

    Spin S=1 chain model for BaMoP2O8

    Full text link
    The reported study was funded by RFBR according to the research project № 18-32-00018

    Molecular beam growth of graphene nanocrystals on dielectric substrates

    Get PDF
    We demonstrate the growth of graphene nanocrystals by molecular beam methods that employ a solid carbon source, and that can be used on a diverse class of large area dielectric substrates. Characterization by Raman and Near Edge X-ray Absorption Fine Structure spectroscopies reveal a sp2 hybridized hexagonal carbon lattice in the nanocrystals. Lower growth rates favor the formation of higher quality, larger size multi-layer graphene crystallites on all investigated substrates. The surface morphology is determined by the roughness of the underlying substrate and graphitic monolayer steps are observed by ambient scanning tunneling microscopy.Comment: Accepted in Carbon; Discussion section added; 20 pages, 6 figures (1 updated

    Substrate-induced band gap opening in epitaxial graphene

    Get PDF
    Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of an energy gap in the electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphene's electronic spectra, they all require complex engineering of the graphene layer. Here we show that when graphene is epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe our results highlight a promising direction for band gap engineering of graphene.Comment: 10 pages, 4 figures; updated reference
    corecore