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Atomic force microscopy (AFM) is a mechanical profiling technique that allows to image surfaces
with atomic resolution. Recent progress in reducing the noise of this technique has led to a reso-
lution level where previously undetectable symmetries of the images of single atoms are observed.
These symmetries are related to the nature of the interatomic forces. The Si(111)-(7×7) surface is
studied by AFM with various tips and AFM images are simulated with chemical and electrostatic
model forces. The calculation of images from the tip-sample forces is explained in detail and the
implications of the imaging parameters are discussed. Because the structure of the Si(111)-(7×7)
surface is known very well, the shape of the adatom images is used to determine the tip structure.
The observability of atomic orbitals by AFM and scanning tunneling microscopy is discussed.

I. INTRODUCTION

In 1959, Schlier and Farnsworth reported their low-energy electron diffraction (LEED) experiments on the sur-
face of Si (111) [1]. After heating the surface to 900 ◦C, they discovered that the surface displays additional
scattering peaks in the LEED pattern. These additional peaks were caused by a reconstruction of the Si sur-
face where the new unit cell is 7×7 as large as the bulk terminated structure. Silicon condenses in the dia-
mond structure with a cubic lattice constant of a0 = 5.430 Å at T = 0K and a0 = 5.4355 Å at T = 300K [2].

The unit vectors of the bulk terminated Si (111) surface have a length of v = a0/
√
2 = 3.84 Å and an angle

of 60◦, in the reconstructed surface, the unit vectors have a length of w = 7 × 3.84 Å = 26.88 Å (see Fig. 1).
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FIG. 1. Top view and cross section (y = 0) of the dimer-adatom-stacking fault (DAS) model of Si (111)-(7×7). The
unreconstructed surface lattice has a lattice constant of 3.84 Å. By forming the 7×7 reconstruction, most of the dangling bonds
of the surface atoms are saturated by an adatom such that the total number of dangling bonds per unit cell is reduced from
49 to 19. Twelve adatoms and a corner hole per unit cell are the striking features of this reconstruction. The adatoms fall
into four symmetry classes: corner faulted (CoF), center faulted (CeF), corner unfaulted (CoU), center unfaulted (CeU). The
19 remaining dangling bonds originate from the 12 adatoms, the 6 rest atoms (ReF, ReU) and the atom in the center of the
corner hole (CoH).

The reconstruction not only affects the surface atom layer, but the topmost four layers, and the new unit cell contains
approximately 200 atoms. Because of this remarkable size of the unit cell, the determination of the atom positions has
been a tremendous challenge for surface scientists for more than two decades. The determination of the positions of
the surface atoms by Binnig et al. with a scanning tunneling microscope (STM) in 1982 [3] was instrumental for the
discovery of all the atomic positions within the surface unit cell. In 1985, the now commonly adapted dimer-adatom-
stacking-fault model (DAS) was finally suggested by Takayanagi et al. [4]. According to this model (see Fig. 1), six
adatoms are situated in each half of the unit cell. The adatoms are bound by covalent bonds formed by sp3 hybrid
orbitals. In the bulk, the hybrid orbitals of neighboring atoms overlap and form an electron pair. At the surface, one
of the four sp3 hybrid orbitals is pointing perpendicular to the surface and forms a dangling bond.
Because of its historic role in the establishment of the STM, the Si (111)-(7×7) surface has been considered as a

touchstone for the feasibility of the atomic force microscope (AFM) [5] as a tool for surface science. However, because
of the reactivity of Si (111)-(7×7), AFM experiments have proven to be difficult in the quasistatic AFM mode, and
chemical bonding between tip and sample has hampered atomic resolution [6]. In 1994, Si (111)-(7×7) was imaged by
AFM for the first time [7,8]. AFM is now becoming an increasingly powerful tool for surface science, as true atomic
resolution is achieved routinely [9,10,11]. Surfaces are imaged with atomic resolution by bringing a probe into close
proximity and sensing the interaction while scanning the surface. It has been shown that a dynamic mode of imaging
is required for resolving reactive surfaces like Si (111) in ultra-high vacuum where chemical bonding between tip and
sample can occur [7,8]. Frequency-Modulation AFM (FM-AFM) [12] has proven to be a practical method for fast
imaging in vacuum and is now the commonly used technique. Recently, it was proposed [13] that the noise decreases by
a factor of approximately 10 by optimizing the stiffness of the cantilever and the oscillation amplitude (see section II).
Consequently, unprecedented resolution has been achieved with these operating parameters. Especially, deviations
from the so far hemispherical apparent shape of the individual atoms have been observed, and these deviations have
been attributed to the symmetry of the chemical bonds between tip and sample.
The first AFM images of Si (111)-(7×7) [7,8] looked similar to the STM images of the empty states. The bond

between the front atom of the tip and the dangling bond on top of the adatoms is thought to be responsible for
the experimentally observed atomic contrast in the FM-AFM images [14,15]. While the atom in the center of the
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cornerholes is 4.45 Å below the adatoms surrounding the cornerhole [16], in typical STM experiments a depth of 2 Å
is observed. The discrepancy between the nominal depth of the cornerholes and the STM data is probably caused by
the finite tip radius of the STM tips. The tip is not sharp enough to allow a penetration of the front atom all the way
to the bottom of the cornerhole. In the first AFM experiment, the observed depth of the cornerhole was only ≈ 0.8 Å
[7]. This even smaller depth is probably due to a significant contribution of long-range forces. It is shown here, that
the contribution of long-range forces is reduced by operating the microscope with very small oscillation amplitudes
and a cornerhole depth of ≈ 2.5 Å is obtained.
In the present work, the Si(111)-(7×7) surface is investigated using FM-AFM with optimised resolution. The

structure of the Si(111)-(7×7) surface is known very well through a large number of experimental and theoretical
studies. Because of its pronounced features, such as the deep cornerholes and the widely spaced adatoms with a well
defined bonding characteristic, the Si(111)-(7×7) surface is a perfect sample for studying the atomic and subatomic
structure of the tip. The spatial resolution of the AFM has advanced sufficiently such that clear deviations of an s- or
pz- type tip have been observed [17]. Therefore, in contrast to previous studies, tip and sample switch roles now and
the well defined surface is used to probe the tip, where much less information about its structure and composition is
available.

II. EXPERIMENTAL SETUP

The data was taken with a modified commercial scanning tunneling microscope [18,19] which has been outfitted
with a force sensor based on a quartz tuning fork (“qPlus-sensor”, [20]). The tip of the force sensor is either an etched
tungsten tip such as known from STM or a silicon crystallite. In FM-AFM, a cantilever beam holding a sharp tip
with an eigenfrequency f0, spring constant k and quality factor Q is subject to controlled positive feedback such that
it oscillates with a constant amplitude A. When this cantilever is brought close to a sample, its frequency changes
from f0 to f = f0 +∆f . This frequency change ∆f is used to create an image z(x, y,∆f) by scanning the cantilever
in the x− y plane and recording the corresponding z−position of the base of the cantilever zb. A feedback mechanism
adjusts zb such that ∆f stays constant. In the “classic” mode of operation, typical parameters are ∆f ≈ −100Hz,
k ≈ 20 N/m, f0 ≈ 200 kHz, A ≈ 10 nm and Q ≈ 105 - see Table 1 in Ref. [13] for an overview. Equation 1 shows that
the vertical resolution in FM-AFM can be improved by reducing the amplitude A to the Å-range [13]. For tip-sample
forces Fts = F0 exp(−z/λ) where z is the tip-sample distance, the vertical noise δz is a function of the amplitude A,
the force range λ, the detection bandwidth B and the temperature T :

δz ∝
(1 +

√

π
2
(Aλ )

3/2)

A

√
TB. (1)

Minimal noise results when A ≈ λ and for a small product of temperature and bandwidth. The bandwidth B
is approximately equal to the number of pixels per second which can be recorded. Operating at a small band-
width implies a small scanning speed and long image acquisition times, and thermal drift can become a problem.
When operating at low temperatures, thermal drift is usually not present and imaging at very small scanning
speeds is feasible. Operation with very small amplitudes is not possible with conventional cantilevers. In order
to avoid instabilities like “jump-to-contact”and to minimize perturbations of the oscillation by tip-sample dissipation,
it helps to use cantilevers with k ≈ 1000N/m and Q ≈ 1000 [21]. A secondary benefit of using small ampli-
tudes is an enhanced sensitivity to short-range forces and a reduced sensitivity to long-range forces (see Fig. 4).
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FIG. 2. Operating principle of a frequency modulation AFM. A cantilever is mounted onto an actuator, which is used to
excite an oscillation at an adjustable fixed amplitude A. When forces act between tip and sample, the oscillation frequency
changes. Additional observables are the driving signal which is required to operate the cantilever at a given amplitude. If
sample and cantilever tip are electrically conductive, a mean tunneling current can also be measured.

The oscillator electronics which controls the force sensor is designed with an emphasis on low noise such that os-
cillation amplitudes in the Å-range can be realized. The commercial phase-locked-loop (PLL) frequency detector is
quartz stabilized [22]. In the vacuum chamber, pumped with an ion and titanium sublimation pump, a base pressure
of 5× 10−11 mbar is reached. As a sample, a 10× 13 mm2 piece of a p-doped (B) silicon (111) wafer with a resistivity
of 9Ωcm is used and the 7×7 - reconstruction is obtained by heating to 1300◦C for 30 s with an electron beam heater.
Typically, the experiment is started by operating the microscope in the STM mode, i.e. the feedback is controlled

by the tunneling current, because the tip can be cleaned and conditioned by applying voltage pulses. The frequency
shift is recorded in parallel with the topography. The tunneling current is collected at the sample and a typical
setpoint of the time-averaged tunneling current is 100pA. The surface is scanned in search for a clean spot which
displays large areas of reconstructed silicon. Also, controlled collisions between tip and sample are performed in order
to shape the tip such that good STM images are obtained. The frequency shift which occurs during STM imaging is
used as a reference before switching into the AFM mode. Then, the tip is withdrawn and the feedback is switched
to frequency shift control. The setpoint of the frequency shift is slowly decreased while the tip is scanning. While
carefully decreasing the setpoint of the frequency shift, the corrugation of the image is increasing until an optimal
value is reached.
One complication of AFM versus STM is that unlike in STM, the imaging signal in AFM is not monotonic with

respect to distance. The tunneling current increases monotonically with decreasing tip-sample distance. However, the
tip-sample force is in general attractive for large tip-sample distance and turns repulsive at a distance of the order of
the equilibrium distance in the bulk crystal. Consequently, the frequency shift is also non-monotonic.
Figure 3 shows a schematic curve of a short-range tip sample interaction curve and the corresponding observable

in FM-AFM - the normalized frequency shift γlA(z)- curve (see Eq. 6).
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FIG. 3. Short-range force modelled by a Morse type force Fts(z) = −2Ebondκ[exp(−κ(z − σ)) + exp(−2κ(z − σ))] with
Ebond = 2.15 eV, σ = 2.35 Å and κ = 1.5 Å−1 and corresponding normalized frequency shift γ(z).

Because the feedback in an FM-AFM uses the frequency shift as the error signal, stable feedback is only possible on
a monotonic branch of the frequency shift curve. When operating on the branch with positive slope, the feedback
system withdraws the cantilever from the surface when the actual frequency shift is smaller (i.e. more negative) than
the setpoint and vice versa. When operating at the branch with negative slope, the sign of the control output has to
be reversed for obtaining proper feedback operation. The two branches meet at z = zγ min with γ(zγ min) = γmin.
Lüthi et al. have identified the distance range where atomic resolution is possible and found that atomic resolution is
obtained for z close to zγ min [23]. For the frequency shift curve shown in Fig. 3, stable feedback on the branch with

positive slope is only possible for z ≥ 2.6 Å. For accessing a smaller distance range, an additional long-range force can
be added by applying an electric field. Hence, zγ min is shifted to a smaller distance and tip and sample can get closer
while the feedback still operates correctly. This is important for imaging atomic orbitals as evident from Fig. 8.

III. OBSERVABLES IN FM-AFM AND PHYSICAL INTERPRETATION OF IMAGES

When the gradient of the tip sample forces kts is constant for the whole z range of the tip motion, the frequency
shift is given by [12]

∆f(zb) = f0
1

2k
kts(zb) (2)

where zb is the mean z−position of the cantilever tip. If kts(z) is not constant for the z−range covered by the oscillating
cantilever zb − A < z < zb + A, ∆f can be calculated by first order perturbation theory using the Hamilton-Jacobi
approach [24]

∆f(zb) = − f2

0

kA2
〈Fts(zb + q′)q′〉 (3)

where zb is the vertical base position of the cantilever as shown in Fig. 2. The precision of ∆f obtained by first
order perturbation theory is determined by the ratio between the magnitude of the perturbation (i.e. the tip sample
potential Vts) and the energy E of the oscillating CL. This ratio is in the order of 10−3 both in classic FM-AFM with
soft cantilevers and large amplitudes (k ≈ 20N/m, A ≈ 10 nm) as well as in non-contact AFM operated with very stiff
cantilevers and small amplitudes (k ≈ 2000N/m, A ≈ 1 nm). In both cases, the energy E = kA2/2 of the cantilever is
≈ 6 keV while the magnitude of Vts does not exceed a few eV, at least for the cases where atomic resolution is desired
and the interaction between tip and sample is dominated by the front atom of the tip.
Substituting q′ = A cos(2πf0t), z = zb −A yields

∆f(z) =
f0√

2πkA3/2

∫ 2A

0

Fts(z + z′)√
z′

1− z′/A
√

1− z′/2A
dz′. (4)

Integration by parts yields an expression which is closely related to Eq. 2 [25]:
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∆f(z) =
f0
2k

2

πA2

∫

2A

0

kts(z + z′)
√

2Az′ − z′2 dz′. (5)

The frequency shift is proportional to an average tip-sample force gradient, which is calculated by weighing the force
gradient with a semi-circle with radius A (Fig. 4).
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FIG. 4. Tip-sample force gradient kts and weight function for the calculation of the frequency shift.

Thus, the use of small amplitudes increases the relative contribution of short-range forces and reduces the contribution
of long-range forces to the frequency shift.
The frequency shift is a function of four parameters: k,A, f0, and z. It is useful to exploit the scaling properties of

∆f in order to be able to scale calculated frequency shifts to a variety of experimental situations. The frequency shift
is strictly proportional to f0 and 1/k, and if A is large compared to the range of the forces (this condition is usually
fulfilled, see below), it scales as A−3/2. Therefore, it is useful to define a “normalized frequency shift”

γ(z, A) =
∆f(z, f0, k, A)

f0
kA3/2. (6)

Explicitly, we find

γ(z, A) =
1√
2π

∫ 2A

0

Fts(z + z′)√
z′

1− z′/A
√

1− z′/2A
dz′. (7)

Again, we can integrate by parts and we find that γ is also given by the convolution of kts with a weight function:

γ(z, A) =
1√
2π

∫

2A

0

kts(z + z′)

√

z′ − z′2

2A
dz′. (8)
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FIG. 5. Tip-sample force gradient kts and weight function for the calculation of the normalized frequency shift γ. If the
amplitude A is large compared to the range of kts, the value of γ saturates and is no longer a function of A.

If the amplitude A is large compared to the range of the tip-sample forces, the normalized frequency shift γ(z, A)
asymptotically reaches a large amplitude limit γlA(z). This is explicitly shown for inverse power, power- and expo-
nential forces in Ref. [26]. For Stillinger-Weber forces (see below), the deviation between γ(z, A) and γlA(z) is less
than 3% for A ≥ 8 Å. For large amplitudes, we find

γlA(z) =
1√
2π

∫ ∞

0

Fts(z + z′)√
z′

dz′ =
1√
2π

∫ ∞

0

kts(z + z′)
√
z′dz′. (9)

Experimental FM-AFM images can be created in the topographic mode, where the frequency shift is kept constant
and the z- position is adjusted accordingly as a function of x and y and the “constant height” mode where the
frequency shift is recorded for constant z as a function of x and y. Thus, topographic FM-AFM images correspond
to a three-dimensional map of z(x, y, γ), and constant height images correspond to a three-dimensional map of
γ(x, y, z, A). Because the frequency shift of the cantilever is only a function of the z− component of the tip-sample
force, γ(x, y, z, A) is simply given by:

γ(x, y, z, A) =
1√
2π

∫

2A

0

Fts(x, y, z + z′)√
z′

1− z′/A
√

1− z′/2A
dz′. (10)

It is noted, that Eq. 10 implies that the cantilever vibrates exactly parallel to the surface normal vector of the
sample. Conventional cantilevers have a tip which is only a few micrometers high, therefore they have to be tilted by
an angle α ≈10 ◦ to make sure that among all the parts of the cantilever and cantilever holder, the tip is the closest
part to the sample. If the cantilever is tilted around the y− axis, γ is given by

γ(x, y, z, A) =
1√
2π

∫ 2A

0

Fts(x+ q′ sinα, y, z + q′ cosα)√
q′

1− q′/A
√

1− q′/2A
dq′. (11)

The qPlus sensor does not need to be tilted because it can be outfitted with large tips (see Fig. 1 in [20]) and in the
simulations presented here, α = 0 is assumed.
Dürig has devised an expanded approach for the calculation of the frequency shift which also encompasses the

damping effects [27].

IV. CALCULATION OF TIP-SAMPLE FORCES

The first step for the simulation of images is the calculation of the tip sample forces Fts. One approach for this
task is the use of the density functional theory and related methods, such as shown by Perez et al. [15]. However, as
emphasized by Bazant et al. [28] the use of empirical force models still has its merits, because ab initio methods require
much more computing power and programming effort than the use of empirical force models. Here, we estimate the
force between the tip of a cantilever and a flat sample Fts(x, y, z) by a long-range component that is only a function
of vertical tip-sample distance z and a short-range force that also depends on the lateral coordinates x and y:
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Fts(x, y, z) = Flr(z) + Fsr(x, y, z). (12)

A. Van-der-Waals forces

In principle, the van-der-Waals (vdW) force is a short-range force, characterized by the 1/r6 vdW potential.
However, the vdW force between two individual atoms is weak compared to the chemical and electrostatic short-
range forces. Nevertheless, the total vdW force between a typical AFM tip and a flat sample can be substantial.
When assuming that the vdW force is additive, the sum over the individual pair contributions can be replaced by an
integration over the volume of the tip and sample (Hamaker integration) [29,30]. For a spherical tip with radius R,
the vdW force is given by

FvdW (ζ) = −AHR

6ζ2
=
CvdW

ζ2
(13)

where AH is the Hamaker constant and ζ is the distance between the center of the front atom of the tip and the plane
connecting the centers of the top layer of the sample atoms. For a Si tip and a Si sample, AH = 0.186 aJ [31]. The
corresponding normalized frequency shift is [32,26]

γvdW (ζ, A) =
1

(2 + ζ/A)3/2
CvdW

ζ3/2
. (14)

B. Chemical bonding forces

If tip and sample consist of silicon, the Stillinger-Weber (SW) potential [33] can be used to model the chemical
interaction. As noted by Bazant et al. [28], the SW potential is a fairly good model for the mechanical properties of
silicon. The SW potential has been used before for the simulation of AFM images of Si(001)-(2×1) in the quasistatic
mode by Abraham et al. [34].
The SW potential necessarily contains nearest and next nearest neighbor interactions. Unlike solids with a face

centered cubic or body centered cubic lattice structure, solids which crystallize in the diamond structure are unstable
when only next-neighbor interactions are taken into account. The nearest neighbor contribution of the SW potential
is

Vn(r) = EbondA
[

B(
r

σ′
)−p − (

r

σ′
)−q

]

exp

(

1

r/σ′ − a

)

for r < aσ′,

= 0 for r > aσ′. (15)

The next nearest neighbor contribution is

Vnn(ri, rj , rk) = Ebond[h(rij , rik, θjik) + h(rji, rjk, θijk) + h(rki, rkj , θikj)] (16)

with

h(rij , rik, θjik) = λ exp

(

γ

rij/σ′ − a
+

γ

rik/σ′ − a

)

(cos θjik +
1

3
)2 for rij,ik < aσ′

= 0 for rij,ik > aσ′. (17)

Stillinger and Weber found optimal agreement with experimental data for the following parameters:

A = 7.049556277 p = 4 γ = 1.20
B = 0.6022245584 q = 0 λ = 21.0
Ebond = 0.34723 aJ a = 1.8 σ′ = 2.0951 Å

The equilibrium distance σ is related to σ′ by σ = 21/6σ′. The potential is constructed in such a way to ensure that
Vn and Vnn and all their derivatives with respect to distance vanish for r > aσ′ = 3.7718 Å. The diamond structure is
favoured by the SW potential because of the factor (cos θ+ 1

3
)2 – this factor is zero when θ equals the tetrahedon bond

angle of θt = 109.47◦. The SW potential leads to a maximal chemical contribution to the normalized frequency shift
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of γ ≈ −10 fNm1/2. This has been verified with great precision in an experiment where the electrostatic interaction
was carefully minimized by Lantz et al. [35,36]. Recently, Laschinger has performed tight binding calculations for
a silicon tip and a silicon sample [37] and has also found a double peak in γ with a magnitude of γ ≈ −10 fNm1/2.
However, the distance at which this double peak occurs is much higher in the tight binding calculation than in the
SW result.

C. Electrostatic forces

The electrostatic force for a spherical tip with radius R at a differential voltage U with respect to a flat surface at
distance ζ is given by [38]

Flr est(ζ) = −U2πǫ0
R

ζ
=
Cest

ζ
, (18)

for R ≫ ζ, where U is the bias voltage between tip and sample. This formula is only correct for ζ ≫ σ where σ is
the nearest neighbor distance in the bulk material of tip and sample. The corresponding normalized frequency shift
is [32,26]

γest(ζ, A) =
Cest√
2ζ

(
1 + ζ/A

√

1 + ζ/(2A)
−
√

2ζ

A
). (19)

For a very small tip-sample distance, there will also be short-range electrostatic forces. The electrostatic po-
tential is very large close to the nuclei of the atoms, and because the electrons shield this field, the electro-
static potential decays exponentially (see Eq. 22). If a bias voltage U is applied between tip and sample, sur-
face charges will result and the electrostatic field has a component which decreases exponentially with the sur-
face separation with a decay length λ = σ/(2π) [39]. If a bias U is applied between tip and sample, we
can roughly estimate the charge that is induced in the tip and sample atom with the image charge method.
We treat both tip and sample atom as a conducting sphere with radius ρ at a distance between their centers
of r. What is the charge induced on the spheres if we vary r we keep the voltage differential U constant?

FIG. 6. Electrostatic interactions of two spheres with radius ρ and distance r at a voltage differential U .

The voltage differential at the two spheres leads to an induced charge in the spheres which is approximately given by

q(r) = 2πǫ0Uρ(1 +
ρ

r − 2ρ
). (20)

This follows from an electrostatic analogy: the equipotential surface of a point charge is a sphere, and for two charges
separated by r, the equipotential surfaces again are approximately spherical. If we model the front atom of the tip
and the sample atom closest to the tip by a sphere with electrostatic potential U/2 and −U/2 respectively, we can
estimate the potential energy by

Vsr estatic(r) = −πǫ0U2ρ2(1 +
ρ

r − 2ρ
)2
1

r
. (21)

Hence, the force is given by Fsr estatic = −∂Vsr estatic/∂z with r =
√

x2 + y2 + z2. The total electrostatic force
is then calculated by summing a long-range electrostatic force of a tip with a tip radius R according to Eq.

9



18 and a short range force given by the short range potential after Eq. 21. This model is shown in Fig. 7.

FIG. 7. Electrostatic interactions of a macroscopic tip with a radius R plus a front atom with radius ρ at a voltage differential
U .

We can thus estimate the electrostatic force by a long-range contribution caused by the interaction of a macroscopic
tip with radius R with a flat surface plus a short-range contribution describing the interaction of the front atom with
the sample atom closest to it.
The model of atoms as perfectly conducting spheres is certainly only a rough approximation. When getting down to

atomic length scales, the induced charges will not spread over the surface of a sphere with the atomic radius. Instead,
the induced charges will modify the filling of the electronic states at tip and sample at the Fermi energy, i.e. the
valence orbitals. Therefore, we first take a look at the charge density of the valence states in silicon. The electronic
wave functions the valence shell of atoms can be approximately constructed with the use of the Slater-type orbital
model [40]. The radial functions of the wave function are given by

fnl(r) =
Nnl

a
3/2
B

(
r

aB
)n−1 exp

(

− Zer

naB

)

. (22)

where n is the main quantum number, Nnl is a normalization constant, aB = 0.529 Å is Bohr’s radius and Ze = Z− s
where Z is the nuclear charge and s is a screening constant. For the valence shell of silicon, n = 3, Z = 14 and
s = 9.85 according to the procedure described in Ref. [40]. The normalization constants are given by

N30 =

√

2

45π
(
Ze

n
)7/2 and N31 =

√

2

15π
(
Ze

n
)7/2. (23)

The wave functions corresponding to the four 3sp3 orbitals are constructed by

|ψ1(x, y, z)〉 =
1

2
[f30(r) + f31(r)(+x/r + y/r + z/r)]

|ψ2(x, y, z)〉 =
1

2
[f30(r) + f31(r)(−x/r − y/r + z/r)]

|ψ3(x, y, z)〉 =
1

2
[f30(r) + f31(r)(+x/r − y/r − z/r)]

|ψ4(x, y, z)〉 =
1

2
[f30(r) + f31(r)(−x/r + y/r − z/r)] (24)

The maximal charge density occurs at a radius where r2f2

nl(r) is maximal, i.e. for

rmax = aB
n2

Ze
. (25)

For silicon with n = 3, rmax = 1.147 Å, close to σ/2 = 1.175 Å where σ is the next neighbor distance in the bulk. In
our estimate of the electrostatic short-range interaction, we assume that the induced charge is centered around the
maximum of the charge distribution at rmax = 1.147 Å with a radius σ/2. Figure 8 shows the calculated charge density.
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FIG. 8. Charge density (in electrons per Å3) for one 3sp3 orbital originating from an adatom located at x = 0 and z = 0
and two 3sp3 orbitals originating from a tip atom located at x = 0 and z = 3.5 Å. The mean density of valence electrons in
bulk silicon is 0.2 electrons per Å3.

This figure shows, that in order to observe two separate maxima of the charge density in an xy− plane, the z−
distance of tip and sample atom needs to be extremely small. Thus, imaging both dangling bonds separately is only
possible if the minimal tip sample distance is of the order of the nearest neighbor distance of the atoms in the bulk
crystal. The calculation of the charge density does not take the interaction of the adatom and the tip into account.
Because of Pauli’s exclusion principle, the adatom can only form a bond to one of the tip dangling bonds at the same
time.
The long-range forces described with the models above vary strongly with the macroscopic tip shape, and the

short-range forces are a function of the chemical identity of the front atom and its alignment to its bonding partners
in the tip. Once we have learned to prepare the AFM tip in a well defined manner such that we know the atomic
arrangement and chemical identity of the tip apex, precise calculations of the tip-sample force are highly desirable.

V. EXPERIMENTAL RESULTS AND SIMULATIONS

Figure 9 shows an experimental result of a Si(111)-(7×7) surface observed by FM-AFM. Every adatom ap-
pears to have two peaks. This feature has been attributed to two dangling bonds originating at the tip which
image the single dangling bond of the adatoms. While this image was recorded with a tungsten tip, we think
that the tungsten tip had a silicon crystallite or cluster at its end. The notion, that tungsten tips pick up
silicon such that the front atom is made of silicon has been put forth in STM experiments before [41,42,43].
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FIG. 9. Topographic image of Si(111)-(7×7) observed by FM-AFM, presumably imaged with a (001) oriented Si tip. Imaging
parameters: k = 1800N/m, A = 8 Å, f0 = 16860Hz, ∆f = −160Hz, rms frequency error δ∆f = 9Hz, scanning speed
= 80 nm/s, sample voltage U = 1.6V.

This interpretation of the data has been challenged recently [44]. We could show, that the feedback issues pro-
posed are not relevant in our experiment [45]. Further, the asymmetry between the two scan directions is not
due to a finite feedback speed, but must be caused by elastic tip deformations such as illustrated in Figure 10.

FIG. 10. Tip bending effect: For a tip crystallite with the geometry proposed, the stiffness in scanning (x) direction is very
small so it is likely that the tip apex bends opposite to the scan direction. This bending explains the reversal in the height of
the two adatom peaks when the scanning direction reverses (Fig. 9).

Figure 11 shows a magnified view of a single adatom. The distance between the contour lines is 10 pm, so the
left peak is about 60 pm higher than the right peak and the depth between the peaks is approximately 20 pm.
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FIG. 11. Topographic image of a single adatom on Si(111)-(7×7) observed by FM-AFM, presumably imaged with a (001)
oriented Si tip. The following imaging parameters were used: k = 1800N/m, A = 8 Å, f0 = 16860Hz, ∆f = −160Hz, rms
frequency error δ∆f = 9Hz, scanning speed = 80 nm/s, sample voltage U = 1.6V, scanning direction: left to right.

Using Eq. 10, we can calculate the expected image once we know the tip-sample force. As we have noted in Ref.
[20], a qualitative picture can be simulated from a long-range vdW force and a short range chemical force given by
the SW potential. Fig. 12 shows the result of that calculation. The left image is simulated for the experimental
normalized frequency shift according to Figure 11 where γ = −160Hz/16860Hz×1800N/m×(8 Å)3/2 = −387 fNm1/2.
The double peaked adatom image can only occur if the long-range attractive force is strong enough such that γmin

occurs at a distance where the charge density of the tip shows strong lateral variations. The right image is sim-
ulated for γ = −4 fNm1/2 - a typical value for weak vdW attractive forces [35,36]. The left and the right images
are simulated with a Si tip which exposes two dangling bonds (see Fig. 17). However, the two dangling bonds
appear separated only if the long-range attractive force is strong enough to allow imaging at very small distances.

FIG. 12. Simulation of a topographic FM-AFM image of a single adatom on Si(111)-(7×7). Parameters (Left):
γ = −387 fNm1/2, A = 8 Å, short-range force: Stillinger Weber, tip geometry shown in Fig. 17, long-range force =
−3.66 × 10−26 Jm/(z +∆)2, ∆ = 5 Å. Parameters (Right): γ = −4 fNm1/2, A = 8 Å, short-range force: Stillinger Weber, tip
geometry shown in Fig. 17, long-range force = −3.66 × 10−28 Jm/(z +∆)2, ∆ = 5 Å.

Several approximate procedures for obtaining γ(x, y, z) which are numerically much less expensive than the exact
calculation after Eq. 10 have been proposed:

1. Ke et al. [46] found that under certain conditions, the geometric mean between force and energy is roughly
proportional to the frequency shift;

2. Schwarz et al. [47] propose to approximate γ by γ ≈
√
2

π
Vts√
λ
where λ is the range of the tip sample potential Vts;
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3. In an earlier publication [26] we proposed to decompose the tip-sample interaction into monotonic basic types

F i
ts with an exponential-, power- or inverse power- z-dependence and showed that γ ≈ 1√

2π

∑

i F
i
ts

√

V i
ts/F

i
ts.

However, as pointed out by Hölscher et al. [48], the use of the approximative approaches leads to inaccuracies for small
tip-sample distances. Moreover, method 1 predicts that γ(ξ) = 0 for Vts(ξ) = 0 and Fts(ξ) = 0 and method 2 predicts
that γ(ξ) = 0 for Vts(ξ) = 0 which is incorrect. Because we are simulating images at very small tip-sample distances
we refrain from using the approximate procedures and perform the integration of γ after Eq. 10. The integration is
implemented with Newton’s method - a step width of 5 pm has proven to provide sufficient accuracy.
Qualitatively, the calculated image is similar to the experimental image. However, the adatom height in the

calculated image is only 0.12 Å - a tenth of the experimental height. This is because the electrostatic short range
interaction has been neglected. The relevance of the electrostatic short-range force is confirmed by experimental
results of atomic resolution on silicon with an applied bias voltage where the normalized frequency shift was as low
as −180 fNm1/2 [23] and even −500 fNm1/2 [50].
In Figure 13, we have also taken the short-range electrostatic force into account.

FIG. 13. Simulation of a topographic FM-AFM image of a single adatom on Si(111)-(7×7). Parameters: γ = −387 fNm1/2,
A = 8 Å, U = 1.6V, short-range electrostatic force after Eq. 21 tip radius R = 1000 Å, Hamaker constant AH = 0.4 aJ, van
der Waals force = −AH ×R/(6(z +∆)2), ∆ = 2 Å, long-range electrostatic force = U2πǫ0R/(z +∆− σ).

Because we have approximated the charges of the dangling bonds to concentrate on a point, the simulated adatom
image shows two spherical subpeaks - in contrast to the crescent shaped experimental subpeaks. We expect that if
accurate charge distributions were taken into account, crescent shaped simulated images would result. The height of
the simulated adatoms, the distance of the subpeaks and the dip between the subpeaks is in excellent agreement with
the experimental images.
Since our first observation of subatomic features by AFM, we have observed similar images of double

peaked adatom structures in various other experiments. In our first experiments, the orientation of the
double peaks was roughly perpendicular to the fast scanning direction. In Figure 14 we present exam-
ples of AFM data where the orientation of the crescents is clearly unrelated to the fast scanning direction.
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FIG. 14. Experimental FM-AFM images of adatoms exposing two peaks per atom. In all the images, the fast scanning
direction is horizontal (x). The orientation of the double peaks is clearly unrelated to the fast scanning direction.

Because of the dramatic dependence of the images on the atomic tip state, the preparation of AFM tips with a
specified front atom symmetry and chemical identity is instrumental for performing well defined experiments. Com-
mercial silicon cantilever tips are oriented in a (001)–direction. In silicon, the natural cleavage planes are (111)
planes. If a macroscopic tip crystallite is limited by natural cleavage planes, a (001) oriented tip will in general
not end in a single atom tip, but in a rooftop type of symmetry. A tip which points into a (111)–direction, how-
ever, will end in a single atom if we assume bulk termination. Moreover, the front atom of this tip is expected
to be particularly stable, because it is bonded to the rest of the tip by three bonds and exposes a single dangling
bond towards the sample. Because of this prospects, we have attempted to cleave single crystalline silicon such
that we obtained crystallites which were limited by (111) planes supposedly ending in a single atom tip [49]. We
have cleaved the silicon in air, so that an oxide layer of a typical thickness of 20 Å will develop at the surface.
As expected, the tips did not yield good STM images after bringing them into vacuum. However, after expos-
ing them to electron bombardment (the same procedure is used for preparing the silicon 7×7 surface), the tips
work excellently in STM mode and also in AFM mode. We speculate, that the (111) oriented sidewalls of the
tip will reconstruct just like a flat silicon surface. Even then, the front atom will be bonded to three next neigh-
bors and expose a single dangling bond. Figure 15 shows an AFM image obtained with such a (111) oriented tip.
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FIG. 15. Topographic image of Si(111)-(7×7) observed by FM-AFM, imaged with a single crystal silicon tip roughly oriented
in a (111) direction. Imaging parameters: k = 1800 N/m, A = 2.5 Å, f0 = 20531 Hz, ∆f = +85Hz, thus γ = +30 fNm1/2, rms
frequency error δ∆f = 0.09Hz, scanning speed = 20 nm/s. The blue bars at the left and bottom border of the image indicate
the x, y-range that is simulated in Fig. 16.

It is also noted, that this image was recorded at positive frequency shift. Hence, the forces between front atom and
sample have been repulsive! An advantage of this mode is that the feedback can be set much faster, because the risk
of feedback oscillations with a catastrophic tip crash is avoided in this mode. Due to the faster feedback setting and
the smaller scanning speed, the relative rms frequency error (=δ∆f/∆f) is significantly smaller in Fig. 15 (0.1 %)
than in Fig. 9 (5.6 %). Figure 16 shows the simulated image. Because the forces are repulsive, the dominant forces
are modelled with the repulsive part of the SW potential.
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FIG. 16. Simulated image of a section of the unit cell showing for γ = +30 fNm1/2. All four types of adatoms as well as the
rest atoms are visible, imaged with a silicon crystallite oriented in a (111) direction with a front atom with a single dangling
bond. The Stillinger-Weber potential has been used for the calculation of the image. The positions of the surface atoms are
adapted from Tong et al. [52].

VI. DISCUSSION

The experimental data which is presented here confirms the prediction of Eq. 1: the resolution of the AFM is
improved by working at small oscillation amplitudes. The resolution obtained in the AFM images is high enough
such that the angular dependence of the tip-sample forces is revealed. Chemical and electrostatic force models have
been employed to explain and analyze the experimental images. The choice of our model forces leads to a qualitative
agreement between experiment and simulations. The double peak images are well explained by a SW potential and
additional electrostatic effects which polarize the orbitals. However, using only the SW potential for the short-range
contribution results in a simulated height of the adatoms which is only 10% of the experimental value. Adding
the simple electrostatic short-range interaction, the height of the simulated adatoms agrees well with experiment,
while the shape of the adatom images differs from experiment. The experimental images show crescents, while the
theoretical images are spherical. It is apparent that the simulation of the images captures the basic principle, but
needs to be refined for obtaining a better agreement with experiment.
The simulations covering the repulsive regime with a SW potential leads to a qualitative agreement between exper-

iment and simulations. The simulation shows that the rest atoms, located between a corner adatom and two center
adatoms, should be visible as a small protrusion. The experiment shows a saddlepoint at the expected rest atom
positions and a hole between three center adatoms. However, the shape of the four types of adatoms is similar in
the simulation and very different in the experiment which shows that taking only next neighbor interaction and bond
angles into account is insufficient for a proper model of the forces between silicon atoms. Also, the heights of the
adatoms is much different than measured by LEED or predicted by calculations [52]. According to LEED data, the
corner adatoms are only about 0.04 Å higher than the center adatoms. In our AFM data, the corner adatoms appear
to be roughly 0.2 Å higher than the center adatoms. Because this height difference is measured both with repulsive
and attractive short-range forces, it cannot be caused by elastic deformations of tip and sample.
Our simulations have shown, that the observation of atomic orbitals is only possible if the tip-sample distance is of

the order of the interatomic distance in the bulk material. The forces that act for such small distances are large, and
deformations and increased dissipation are expected to occur. These issues and the observability of atomic orbitals
by STM are discussed in the following subsections.
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A. Tip stability issues

An important issue arises in the tip and sample stability. So far, we have assumed that both tip and sample atoms
are not strained when the tip comes close to the sample. In STM, this might be the case when the tunneling impedance
is large, and even in dynamic AFM it is conceivable that Fts is small enough such that the elastic deformation of tip
and sample is not noticeable.
However, as is evident from Fig. 8, the observation of deviations of the spherical symmetry of atoms is only

possible in the near field, i.e. for distances which are of the order of the bulk interatomic distance. Thus, for
observing these features by AFM, tip and sample have to come very close, and the atoms close to the inter-
action region will suffer from noticeable strain. Figure 17 shows a ball and stick model of a silicon crystallite
which is limited by (111) planes and points into a (001) direction. This crystallite is used as a model for our tip.

FIG. 17. Model for a tip crystallite cleaved from bulk silicon with (111)-oriented surfaces and pointing in a (001) direction.

The stiffness of the bonds of the front atom to the upper part of the tip can be estimated using the Stillinger-Weber
potential. For the crystallite shown in Fig. 17, the stiffness in z-direction is 115N/m, in x-direction it is 20.4N/m
and in y-direction it is 224N/m. The stiffness can also be evaluated from the phonon spectrum of silicon. For an
optical phonon at the Γ-point (i.e. the wave vector is zero), neighboring atoms vibrate opposite to each other. We can
model this situation with a single silicon atoms which is suspended by four springs with half the length of the nearest
neighbor distance, each having an effective spring constant in z-direction of kz half bond. The wave number of optical
phonons in silicon at the Γ-point is 520 cm−1 which corresponds to fopt. phonon ≈ 15.589THz [2]. The mean atomic
mass (natural mixture of isotopes) of silicon is 28.086 amu [51], thus the spring constant kz half bond = 1

4
×447.45N/m

= 111.9N/m. The stiffness of the two bonds connecting the front atom of the tip crystallite with the rest of the tip
is given by twice the stiffness of one full-length bond with k = 1

2
kz half bond yielding kz = 111.9 N/m – in excellent

agreement with the value of 115N/m derived from the Stillinger-Weber potential.
The positions of the two atoms which attach to the front atom have been kept fixed for the derivations. In reality,

all the tip atoms will respond to the force on the front atom. The effect can be estimated by arranging the springs
corresponding to a tip atom layer in series. For the tip shown in Fig. 17, the m-th bilayer contains one layer with m2

and one layer with m(m+ 1) atoms. Each of these atoms has two bonds to the layer above. The effective stiffness of
the tip crystallite in z-direction is then given by

1

keff
=

1

kz

∞
∑

m=1

[
1

m2
+

1

m(m+ 1)
] =

1

kz
(1 +

π2

6
) ≈ 1

0.4 · kz
. (26)

For tip-sample forces of the order of 2 nN, we expect that the bonds between the front atom of the tip and its next
neighbors will be strained by 2 nN/kz ≈ 0.2 Å. The total strain of the tip is expected to be 2 nN/kz/0.4 ≈ 0.5 Å. It is
expected that the sample will become strained to a similar extent.

B. Amplitude feedback stability

When the oscillating cantilever of an FM-AFM comes close to the sample, increased damping has been observed
experimentally [50,53,54,55] and described theoretically [13,27,56,57,58].
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We expect that in addition to the damping channels which are present in classic FM-AFM, an even more significant
damping channel will open up for very small tip sample distances. When the front atom of the tip moves to the
sample, both the front atom and the adjacent sample atom will be pulled from their equilibrium position and relax
when the cantilever swings back from the sample. This process will happen adiabatically and dissipate little energy as
long as the closest distance is larger than the distance where the maximal attractive force Fattmax occurs (inflection
point).
However, when the distance between front atom and sample gets closer than the inflection point, an additional

channel of significant energy loss will occur because the front atom of the tip and the sample atom will be pulled
out of the equilibrium position, and rather than moving back adiabatically, will stick together until the bonding force
is overcome by the withdrawing cantilever. At this point, the front atom and the sample atom will be pulled out
by a distance Fattmax/kz. When the cantilever swings back, the front and sample atom will oscillate at the phonon
frequency and dissipate the stored energy

∆E =
F 2

attmax

2 kz
. (27)

The maximal attractive force Fattmax is about 4 nN, according to the SW potential. Thus, the energy loss per cycle
due to this process is 0.08 aJ per atom. Because both the front atom at the tip and the sample atom will be excited
by this process, the total energy loss is thus of the order of 1 eV per cycle. This energy has to be provided by the
oscillator circuit which drives the cantilever. The intrinsic energy loss of the cantilever is πkA2/Q, where k is the
spring constant of the cantilever, A is its oscillation amplitude and Q is its quality factor. For the qPlus sensor,
Q ≈ 4000 and k = 1800N/m. For an amplitude of the order of 1 nm, the intrinsic loss per cycle is of the order of
10 eV and the extra loss due to tip-sample dissipation is small. With conventional silicon cantilevers, typical Q factors
are at least one order of magnitude larger and the intrinsic dissipation is much smaller. Amplitude control can become
difficult with conventional cantilevers when attempting to get very close to the sample as required for observing the
orbital structure of atoms.

C. Observability of individual orbitals by STM

To our knowledge, the observation of multiple maxima in the image of a single atom in STM mode has not been
reported before. We can identify three possible explanations why the internal orbital electron structure of atoms is
observable by AFM, but apparently not by STM:

1. As shown in Fig. 8, the tip sample distance needs to be very small before the charge density of valence electrons
displays a noticeable deviation from the rotational symmetry about the z− axis. Typical tip-sample distances
(from the center of the tip atom to the center of the closest sample atom) are 5−8 Å in STM. When attempting
to image in STM mode at a tip sample distance of 2−3 Å, the tip-sample force is very large and the tip atom or
sample atom may not withstand the shear forces acting during scanning. In dynamic AFM, this small distance
occurs only intermittently and the lateral movement can occur during the oscillation phase where the tip is far
from the sample;

2. While it is known that the force between two atoms is in general attractive at large distances and becomes
repulsive at short distances, the tunneling current is usually assumed to be a monotonic function of the distance.
Thus, it is expected that the orbital structure of the valence electrons has a larger effect on the force than on
the tunneling current;

3. In the STM mode, typical tunneling voltages used for imaging silicon are of the order of 2V and the energy of
the tip and sample states which contribute to the tunneling current is spread over a range of 2 eV. Just like in
atomic wave functions, where the angular dependent p, d and f sub-shells add up to a spherically symmetric
charge distribution if all the states of a given main quantum number are filled, we expect that a similar process
can happen in tunneling experiments when a range of tip and sample energies contributes to the total tunneling
current. So it is conceivable that even if some states which contribute to tunneling are not symmetric with
respect to the z−axis, the sum of these states is symmetric around z.

In summary, we have shown that atomic force microscopy offers new insights into the atomic structure and symmetry
of surface atoms and AFM tips. We are confident that using small oscillation amplitudes, stiff cantilevers and oscillator
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setups which are insensitive to the enhanced damping at very close tip-sample distances provides a new experimental
tool to study the nature of the atomic bond and the electronic structure of atoms.

The authors are indebted to C. Laschinger and T. Kopp for discussions about the tip-sample interaction, and to M. Lantz and
H. Hug for fruitful conversations about feedback stability. This work is supported by the BMBF (project no. 13N6918/1).
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