It has been shown that electron transitions, as measured in a scanning
tunnelling microscope (STM), are related to chemical interactions in a
tunnelling barrier. Here, we show that the shape and apparent height of
subatomic features in an atomic force microscopy (AFM) experiment on Si(111)
depend directly on the available electron states of the silicon surface and the
silicon AFM tip. Simulations and experiments confirm that forces and currents
show similar subatomic variations for tip-sample distances approaching the bulk
bonding length.Comment: 5 pages and 4 figure