40 research outputs found

    On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter

    Get PDF
    The observation of a compact object with a mass of 2.50-2.67Me on 2019 August 14, by the LIGO Scientific and Virgo collaborations (LVC) has the potential to improve our understanding of the supranuclear equation of state. While the gravitational-wave analysis of the LVC suggests that GW190814 likely was a binary black hole system, the secondary component could also have been the heaviest neutron star observed to date. We use our previously derived nuclear-physics-multimessenger astrophysics framework to address the nature of this object. Based on our findings, we determine GW190814 to be a binary black hole merger with a probability of >99.9%. Even if we weaken previously employed constraints on the maximum mass of neutron stars, the probability of a binary black hole origin is still ∼81%. Furthermore, we study the impact that this observation has on our understanding of the nuclear equation of state by analyzing the allowed region in the mass-radius diagram of neutron stars for both a binary black hole or neutron star-black hole scenario. We find that the unlikely scenario in which the secondary object was a neutron star requires rather stiff equations of state with a maximum speed of sound cs ≥0.6 times the speed of light, while the binary black hole scenario does not offer any new insight

    Multimessenger constraints on the neutron-star equation of state and the Hubble constant

    Get PDF
    Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using X-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1:4-solar mass neutron star is 11:75þ0:86_0:81 km at 90% confidence and the Hubble constant is 66:2þ4:4_4:2 at 1s uncertainty

    Standardizing kilonovae and their use as standard candles to measure the Hubble constant

    Get PDF
    The detection of GW170817 is revolutionizing many areas of astrophysics with the joint observation of gravitational waves and electromagnetic emissions. These multimessenger events provide a new approach to determine the Hubble constant, thus, they are a promising candidate for mitigating the tension between measurements of type-Ia supernovae via the local distance ladder and the cosmic microwave background. In addition to the "standard siren"provided by the gravitational-wave measurement, the kilonova itself has characteristics that allow one to improve existing measurements or to perform yet another, independent measurement of the Hubble constant without gravitational-wave information. Here, we employ standardization techniques borrowed from the type-Ia community and apply them to kilonovae, not using any information from the gravitational-wave signal. We use two versions of this technique, one derived from direct observables measured from the light curve, and the other based on inferred ejecta parameters, e.g., mass, velocity, and composition, for two different models. These lead to Hubble constant measurements of H0=109-35+49 km s-1 Mpc-1 for the measured analysis, and H0=85-17+22 km s-1 Mpc-1 and H0=79-15+23 km s-1 Mpc-1 for the inferred analyses. This measurement has error bars within ∼2 to the gravitational-wave measurements (H0=74-8+16 km s-1 Mpc-1), showing its promise as an independent constraint on H0

    Measuring the Hubble constant with a sample of kilonovae

    Get PDF
    Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H0). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H0 contraints. Here, we show measurement of H0 using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find H0 ¼ 73:8þ6:3 5:8 km s1 Mpc1 and H0 ¼ 71:2þ3:2 3:1 km s1 Mpc1 for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs

    Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities

    Get PDF
    Purpose of Review: The article discusses the two most significant modifiable risk factors for dementia, namely, physical inactivity and lack of stimulating cognitive activity, and their effects on developing cognitive reserve. Recent Findings: Both of these leisure-time activities were associated with significant reductions in the risk of dementia in longitudinal studies. In addition, physical activity, particularly aerobic exercise, is associated with less age-related gray and white matter loss and with less neurotoxic factors. On the other hand, cognitive training studies suggest that training for executive functions (e.g., working memory) improves prefrontal network efficiency, which provides support to brain functioning in the face of cognitive decline. Summary: While physical activity preserves neuronal structural integrity and brain volume (hardware), cognitive activity strengthens the functioning and plasticity of neural circuits (software), thus supporting cognitive reserve in different ways. Future research should examine whether lifestyle interventions incorporating these two domains can reduce incident dementia

    Longitudinal Imaging of the Ageing Mouse

    Get PDF
    Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging

    On the nature of GW190814 and its impact on the understanding of supranuclear matter

    No full text
    The observation of a compact object with a mass of 2.50-2.67Me on 2019 August 14, by the LIGO Scientific and Virgo collaborations (LVC) has the potential to improve our understanding of the supranuclear equation of state. While the gravitational-wave analysis of the LVC suggests that GW190814 likely was a binary black hole system, the secondary component could also have been the heaviest neutron star observed to date. We use our previously derived nuclear-physics-multimessenger astrophysics framework to address the nature of this object. Based on our findings, we determine GW190814 to be a binary black hole merger with a probability of >99.9%. Even if we weaken previously employed constraints on the maximum mass of neutron stars, the probability of a binary black hole origin is still ∼81%. Furthermore, we study the impact that this observation has on our understanding of the nuclear equation of state by analyzing the allowed region in the mass-radius diagram of neutron stars for both a binary black hole or neutron star-black hole scenario. We find that the unlikely scenario in which the secondary object was a neutron star requires rather stiff equations of state with a maximum speed of sound cs ≥0.6 times the speed of light, while the binary black hole scenario does not offer any new insight
    corecore