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7 Artemis, Université Côte d’Azur, Centre National de la Recherche Scientifique, F-06304 Nice, France
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Observations of neutron-star mergers based on distinct messengers, including gravitational waves and elec-
tromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus, and to mea-
sure the expansion rate of the Universe described by the Hubble constant. We perform a joint analysis of the
gravitational-wave signal GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and
the gravitational-wave signal GW190425, both originating from neutron-star mergers. We combine these with
previous measurements of pulsars using X-ray and radio observations, and nuclear-theory computations using
chiral effective field theory to constrain the neutron-star equation of state. We find that the radius of a 1.4 solar
mass neutron star is 11.75+0.86−0.81 km at 90% confidence and the Hubble constant is 66.2+4.4−4.2 km Mpc−1 s−1 at
1σ uncertainty.

Multi-messenger observations of binary neutron-star (BNS)
mergers, which employ different probes to observe the same
astrophysical process, elucidate the properties of matter under
extreme conditions and can be used to determine the expan-
sion rate of the Universe described by the Hubble constant. An
example was the joint detection of gravitational waves (GWs),
GW170817 [1], a gamma-ray burst (GRB), GRB170817A, a
GRB afterglow arising from synchrotron radiation [2], and
a kilonova, i.e., an electromagnetic (EM) signal in the opti-
cal, infrared, and ultraviolet bands originating from the ra-
dioactive decay of atomic nuclei created during a merger,
AT2017gfo [3], from the same astrophysical source. Using
only GWs and the redshift of the host galaxy, this event led
to an independent measurement of the Hubble constant [4].
It also placed constraints on the equation of state (EOS) of
matter at densities higher than in the center of an atomic nu-
cleus, e.g., [5]. Moreover, GWs have been detected from an-
other BNS merger, GW190425 [6], but no EM counterpart
was observed [7]. Joint observations of the mass and radius
of the rapidly rotating neutron star (pulsar) PSR J0030+0451
by the Neutron Star Interior Composition Explorer (NICER),
e.g., [8], have provided independent constraints on NS prop-
erties [9]. These build upon mass measurements of the
pulsars PSR J0740+6620 [10], PSR J0348+4042 [11], and
PSR J1614-2230 [12] using radio observations.

We combine the results from GW170817, GW190425,
AT2017gfo, GRB170817A, PSR J0030+0451,
PSR J0740+6620, PSR J0348+4042, and PSR J1614-
2230 with nuclear-theory calculations of the EOS, the latter
using chiral effective field theory (EFT) predictions at low
densities [13]. Previous studies have connected GW analyses
to nuclear-physics predictions, e.g., [14, 15], or performed
Bayesian analyses of EM and GW signals, e.g., [16, 17], or

combined GW and NICER results [18, 19]. We combine all
of these approaches, with the goal of providing improved
constraints on the supranuclear EOS and measuring the
Hubble constant.

We use a multi-step procedure, illustrated in Fig. 1, to incor-
porate constraints from nuclear theory and from astrophysical
observations. Our analysis begins with a newly-constructed
set of 5000 EOSs [13] that provide possible descriptions of
the structure of NSs (Fig. 1A). At low densities, these EOSs
are constrained by microscopic calculations using chiral EFT
interactions and computational many-body methods. Chiral
EFT is a systematic theory for nuclear forces that describes the
interactions in terms of nucleon and pion degrees of freedom
and is consistent with the symmetries of quantum chromody-
namics [20]. The resulting forces are arranged in an order-
by-order expansion, which is then truncated at a certain level.
This systematic scheme allows for the estimation of theoret-
ical uncertainties from missing higher-order contributions to
the nuclear interactions. The resulting nuclear Hamiltonians
are inserted into the Schrödinger equation, which has been
solved using quantum Monte Carlo methods [21]. Chiral EFT
might be valid up to 2nsat [22], where nsat is the nuclear sat-
uration density, nsat = 0.16 fm−3. Beyond that, chiral EFT
interactions and their uncertainty estimates are not reliable.
We adopt a more conservative limit and constrain our EOSs
with chiral EFT calculations up to densities of 1.5nsat. At
densities above that limit, we employ a model-agnostic para-
metric expansion scheme that represents the EOS in the speed
of sound plane [22] and ensures consistency with causality.

We then restrict the set of EOSs by including astrophysical
constraints. In a first step, we begin by enforcing a maximum
NS mass Mmax with an upper bound of Mmax ≤ 2.16+0.17

−0.15

solar masses (M⊙) at 2σ uncertainty [13, 23]. This upper
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(A) Chiral effective field theory: 
EOS derived with the chiral EFT 
framework

(C) NICER:
PSR J0030+0451

(D) GW170817: 
reanalysis with
IMRPhenomPv2_NRTidalv2

(E) AT2017gfo: 
analysis of the observated lightcurves

Prior construction

(F) GW190425: 
reanalysis with
IMRPhenomPv2_NRTidalv2

(G) No EM detection for GW190425:

(B) Maximum Mass Constraints: 
PSR J0740+6620/ PSR J0348+4032/ PSR 
J1614-2230 and GW170817/AT2017gfo 
remnant classification

Parameter estimation

(H)

FIG. 1. Multi-step procedure to constrain the neutron-star EOS. In each panel, allowed (disallowed) EOSs are shown as blue (gray) lines.
Lower plots indicate the probability distribution function (PDF) for the radius of a 1.4 solar mass neutron star, with the 90% confidence range
indicated by dashed lines. (A) The set of EOSs from chiral EFT. (B) The EOS set restricted by incorporating information from mass measure-
ments of PSR J0740+6620, PSR J0348+4032, PSR J1614-2230, and the maximum-mass constraints obtained from GW170817/AT2017gfo.
The 90% confidence interval of the maximum mass posterior probability distribution is shown by a purple band. (C) The EOS set further
restricted by the NICER mass-radius measurement of PSR J0030+0451 (purple contours at 68% and 95% confidence). (D) Further restriction
of the EOS set using Bayesian inference from our reanalysis of the GW170817 waveform. Contours at 68% and 95% confidence show the
mass-radius measurements of the primary (red) and secondary (orange) neutron stars. (E) We use the chirp mass, mass ratio, and the EOSs
as Bayesian prior for our analysis of AT2017gfo. (F) Further restrictions by analysing GW190425. This is our fiducial result. (G) Additional
analysis assuming that GW190425 did not produce a detectable EM signal. (H) The radius constraint at each step of this analysis, with 90%
confidence ranges.
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TABLE I. Comparison with selected radius constraints from
multi-messenger observations. For each reference, we indicate
if chiral EFT input, constraints from heavy-pulsar mass measure-
ments (Heavy PSRs), maximum-mass constraints obtained from
GW170817/AT2017gfo (Mmax), GW constraints from GW170817
or GW190425, constraints from kilonova light curves (AT2017gfo),
constraints from the GRB afterglow (GRB170817A), and constraints
from NICER have been used. We indicate with 3 if either the full
posterior probability distribution or a Bayesian Inference was em-
ployed, ◯ if some information was included without performing a
Bayesian analysis or including the full posterior probability distribu-
tion, and 7 if the information was not included in the study. Stated ra-
dius uncertainties represent 90% confidence intervals, where for [17]
we also include systematic uncertainties as stated by the authors.

Reference
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R1.4M⊙ [km]

This work yes 3 3 3 3 3 3 3 11.75+0.86
−0.81

[19] yes 3 7 3 7 7 3 7 [11.63,13.26]

[15] yes ◯ ◯ 3 7 7 7 7 11.0+0.9
−0.6

[16] no 3 ◯ 3 3 ◯ 7 7 [11.3,13.5]

[17] no 7 7 3 ◯ 7 7 7 (12.2+1.0
−0.8 ± 0.2)

[5] no ◯ 7 3 7 7 7 7 11.9+1.4−1.4

[14] yes ◯ 7 ◯ 7 7 7 7 [9.9,13.6]

bound was derived by assuming that the final merger remnant
of GW170817 was a black hole [23]. We derived a lower
bound for the maximum mass by combining radio observa-
tions of PSR J0740+6620 [10], PSR J0348+4042 [11], and
PSR J1614-2230 [12]. The resulting distribution for the max-
imum mass and the updated EOS set are shown in Fig. 1B.
For comparisons with other works, we calculate the radius of
a typical 1.4M⊙ NS at 90% confidence. The corresponding
radii at each stage of our analysis are shown in Fig. 1H.

In the next step, we include the NICER results [13] using
the joint posterior probability density function for mass and
radius for the best fit model of Ref. [8] shown in Fig. 1C. We
assign a probability to each EOS based on the maximum NS
mass and NICER constraints.

By sampling over the obtained EOS set using their pre-
computed probabilities, we analyze GW170817 [13], where
NS properties are inferred from GW signals through tidal ef-
fects that are larger for NSs with smaller masses and larger
radii. We employ the PARALLEL BILBY software [27] and the
GW waveform model IMRPhenomPv2 NRTidalv2 [28]
for cross-correlation with the observed GW data [1], infer-
ring the binary properties from the measured signal. This
model is an updated version of the waveform approximant
IMRPhenomPv2 NRTidal which has been used in previ-
ous analyses of GW170817 [29] and GW190425 [6].

In the fourth step, we add constraints from AT2017gfo
using a published light curve model [13, 30]. We use a
Gaussian-Process-Regression framework to compute generic
light curves for various ejecta-mass properties. To connect
the individual ejecta parameters to the properties of the sys-

tem, we assume that the total ejecta mass Mej is a sum of
multiple components: dynamical ejecta Mdyn

ej , the material
released during the merger process via shocks and torque,
and disk-wind ejecta ζMdisk: Mej = Mdyn

ej + ζMdisk + α.
The parameters α, corresponding to a potentially unmodelled
ejecta component, and ζ, determining how much mass of the
disk is ejected, are unknown free parameters. Our treatment
of the dynamical ejecta follows previous work [16]. Exist-
ing disk-wind ejecta models are known to be inappropriate
for systems with high mass ratios. To overcome this issue,
we include an explicit mass-ratio dependence in the disk-
mass prediction [13]. The GW results for the chirp mass
Mc = (m1m2)3/5(m1 +m2)−1/5, with m1 and m2 being the
masses of the heavier and lighter NS, respectively, the mass
ratio q =m1m

−1
2 , and the EOS are used as priors for our anal-

ysis of AT2017gfo. This further constrains the EOS models
(Fig. 1D). Including all steps so far, we obtain the radius of a
1.4M⊙ NS of R1.4M⊙

= 11.67+0.95
−0.87 km at 90% confidence.

These results can be further constrained by combining them
with another observed BNS merger, GW190425 [6]. Due to
the high total mass of GW190425 of 3.4+0.3

−0.1M⊙ at 90% con-
fidence, which suppresses tidal effects, we find that the in-
clusion of GW190425 does not improve the precision, but
does slightly shift the median value within the uncertainty.
Our final estimate on the radius of a 1.4M⊙ NS is R1.4M⊙

=
11.75+0.86

−0.81 km with 90% confidence. We also explore an al-
ternative ordering of individual analysis steps (Fig. S12) and
systematic uncertainties due to the use of different GW mod-
els (Fig. S13), but obtain a consistent radius constraint (see
Supplementary Text).

Several independent EM searches for counterparts to
GW190425 observed large fractions of the possible sky
area [7] (see Supplementary Text), suggesting that most of
the appropriate region was searched but no EM signal was de-
tected. To include this non-detection, we employ the same
kilonova analysis as for GW170817, combining it with upper
limits reported by the optical EM counterpart searches. Us-
ing the distance information from the GW data, 159+69

−71 Mpc
at 90% confidence level [6], we obtain limits on the absolute
magnitude of a potential counterpart. Using our light curve
models, we rule out parts of the parameter space for which
the predicted absolute magnitude would be above the obtained
limit. Following this procedure, we arrive at a radius estimate
of R1.4M⊙

= 11.74+0.88
−0.77 km (90% confidence) under the as-

sumption that if GW190425 produced a detectable signal, it
would have been found. To be conservative, we omit this step
from the subsequent analysis.

Our study includes information from GW170817,
AT2017gfo, GRB170817A, GW190425, the NICER ob-
servation of PSR J0030+0451, and the radio observations
of PSR J0740+6620, PSR J0348+4032, PSR J1614-2230.
Our approach allows for strong phase transitions in the
EOS, the combination of multiple events, and the incorpo-
ration of EM non-detections. We compare our final result
of R1.4M⊙

= 11.75+0.86
−0.81 km with a selection of previous

studies in Tab. I. We note that the inclusion of additional
astrophysical observations does not necessarily lead to tighter
constraints (Fig. 1H) as (i) the full combined posterior
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FIG. 2. Distance-inclination constraints and Hubble constant measurement. (A) Estimated distance and inclination of GW170817 from
the GW waveform (red) and AT2017gfo analysis (purple) and the radio interferometry constraint [24] derived from GRB170817A (blue).
The combined distance-inclination measurement is shown in orange. Contours are shown at 68% and 95% confidence. (B) Hubble constant
estimate from our combined inclination measurement (orange histogram). Symbols mark the most probable values and 1σ uncertainties from
this work (orange), the Planck measurement of the Cosmic Microwave Background [25] (Planck CMB, purple), the Hubble measurement via
type-Ia supernovae [26] (SNIa, blue), and the Hubble estimate from GW170817 alone [4] (GWs, red).

probability distributions are incorporated in the analysis and
(ii) the number of events detected with multiple messenger
remains very small.

In addition to EOS studies, we perform a measurement
of the Hubble constant [13]. For this purpose, we assume
that measurable properties related to the kilonova, e.g., time-
scale and color evolution of the ejecta, are connected to its
intrinsic luminosity. Theoretical kilonova predictions can
be used to standardize kilonovae light curves and thereby
measure their distances [31]. Combining the distance mea-
surement with the redshift z of the host galaxy NGC 4993,
z = 0.009783 ± 0.000023, constrains the Hubble constant [4].
We combine the distance and inclination measurements of the
GW and kilonova analyses with the measurement using ra-
dio observations of the GRB afterglow (Fig. 2) [13, 24]. The
comparison of a kilonova observation to a light curve model
permits a large parameter range, due to the complexity of the

model. Adopting two other kilonova models (see Supplemen-
tary Text) indicates that our kilonova constraints are conser-
vative, but we note that it is not possible to test the robust-
ness of different kilonova models with only one well-sampled
kilonova observation (AT2017gfo). Combining all these mea-
surements leads to an improved distance constraint and an es-
timate of the Hubble constant ofH0 = 66.2+4.4

−4.2 km Mpc−1 s−1

at 1σ uncertainty (Fig. 2). We find that the radio inclination
measurement reduces the existing uncertainty on the Hubble
constant by more than the kilonova measurement, at least for
this single event. The uncertainty does not allow us to re-
solve the tension between measurements via type-Ia super-
novae [26] and the Planck measurement of the Cosmic Mi-
crowave Background [25], but our results indicate a prefer-
ence for the latter and disfavor the measurement via type-Ia
supernovae [26].
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MATERIALS AND METHODS

Chiral effective field theory and the neutron-star equation of state

Microscopic nuclear interactions are governed by multiple processes, e.g., various longer-range meson exchanges between two
or more nucleons or short-range processes that are typically modeled by contact interactions. Nuclear effective field theories,
like chiral EFT [20, 33–36], provide a framework for arranging the large number of operator structures for nuclear interactions.
Nuclear EFTs start from the most general Lagrangian that is consistent with all symmetries of the fundamental theory of strong
interactions, quantum chromodynamics, and that describes the various interaction mechanisms. In chiral EFT, this Lagrangian
is written in terms of nucleon and pion degrees of freedom, and includes pion-exchange interactions as well as nucleon-contact
interactions [33, 34]. The latter absorb short-range effects, e.g., exchanges of heavier mesons, and depend on coupling constants
that have to be adjusted to experimental data. Because this Lagrangian contains an infinite number of terms, it is then expanded
in powers of momenta p over the breakdown scale Λb. In addition to two-nucleon interactions, the chiral EFT expansion includes
many-body forces, where three or more nucleons interact with each other. This results in a systematic and consistent expansion
of two- and many-body nuclear forces, which can be truncated at a chosen order. By going to higher orders in the expansion,
nuclear interactions can be systematically improved. By calculating results order-by-order, theoretical uncertainties due to our
incomplete understanding of nuclear interactions can be quantified [37].
Chiral interactions allow an extrapolation of nuclear interactions away from experimentally accessible systems to those that are
difficult or impossible to measure in terrestrial laboratories, e.g., the neutron-rich matter in the core of NSs. However, chiral
interactions are limited to momenta p < Λb ≈ 600 MeV [38]. At larger momenta, chiral interactions are not reliable because
short-range (high-energy) physics that was absorbed by the coupling constants needs to be explicitly included.

The EOSs used in this work are constrained at low densities by quantum Monte Carlo calculations of neutron matter [21,
39] at temperature T = 0, using the auxiliary field diffusion Monte Carlo approach and chiral EFT interactions in their local
formulation [40–42]. The unknown coupling constants in chiral EFT are determined by fitting the nuclear Hamiltonians order-
by-order to experimental data [43]. The interactions used here were fitted to two-nucleon scattering data, the 4He ground state
energy, and neutron-α scattering phase shifts [41, 42]. The order-by-order convergence of this approach remains valid up to
densities of twice the nuclear saturation density [22]. To be more conservative, we employ these calculations up to densities of
1.5nsat to constrain the NS EOS below that density. First, we extend the results to matter in β-equilibrium and add a crust [44].
Then, we extend our EOS models to densities beyond 1.5nsat by employing a model-agnostic parametric expansion scheme
that represents the EOS in the speed of sound plane [15, 45–47]. For each EOS, we sample a set of six randomly distributed
points in the speed of sound plane at baryon densities between 1.5nsat and 12nsat and connect them by line segments. We
found that NS properties are not very sensitive to the number of line segments when varying it between 5-10. This construction
by design remains causal and stable at all densities, 0 ≤ cS ≤ c, with the speed of sound cS and the speed of light c. From
the speed-of-sound curves, we reconstruct the EOSs and solve the Tolman-Oppenheimer-Volkoff (TOV) equations [48, 49] to
extract NS structure properties. For each sampled EOS, we construct a second EOS that includes a segment with cS = 0 with
random onset density and width, to simulate EOSs with strong first-order phase transitions. We sampled 5000 different EOSs to
produce a uniform prior on the radius of a typical 1.4M⊙ NS (Fig. 1A).

Similar to commonly used polytropic expansion schemes [50], the speed-of-sound extension does not make any assumptions
about degrees of freedom at higher densities, and includes many possible density dependencies for the EOS at high densities. For
example, this extension includes regions of sudden stiffening or sudden softening, as would be expected from a strong first-order
phase transition.

Incorporation of the maximum mass neutron-star constraints

For the inclusion of the astronomical constraints on the EOSs, we adopt a Bayesian approach [51, 52], and express the
constraints in terms of likelihood functions that can be used for the GW and EM analysis.

We have used constraints on the lower bound of the maximum NS mass Mmax given by the mass measurements of pulsars
PSR J0740+6620 [10], PSR J0348+4032 [11], PSR J1614-2230 [12], and a constraint on the upper bound on Mmax [23] of
Mmax = 2.16+0.17

−0.15M⊙ at 95% confidence. Similar upper bounds on Mmax have also been obtained in different studies, e.g.,
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Mmax ≲ 2.17M⊙ at 90% confidence [53], Mmax ≲ 2.3M⊙ [54], or Mmax ≲ 2.16 − 2.28M⊙ [55]. The corresponding likelihood
LMmax is given by

LMmax(EOS) = LMmax(Mmax)
=∏

i

CDF(Mmax,N (MPSR
i , σPSR

i ))

× (1 −CDF(Mmax,N (2.16M⊙,0.17M⊙))),

(S1)

where CDF(x,N (µ,σ)) is the cumulative distribution function corresponding to a normal distribution N (µ,σ) evaluated at x.
MPSR

i and σPSR
i are the mass measurement and the 1-σ uncertainty reported for the pulsars that we included for the analysis,

respectively. The values for MPSR
i and σPSR

i are tabulated in Tab. S1. For the upper bound on Mmax, we take a more conservative
uncertainty, adopting the 95% credible range as the standard deviation for the likelihood input. In the likelihood LMmax , we have
approximated the measurements [10–12] and estimates [23] as Gaussian. The final likelihood is shown in Fig. S1.

TABLE S1. Summary of the heavy-pulsar mass measurements. The masses MPSR and their 1-σ uncertainties σPSR reported for the
pulsars included in this analysis.

Pulsar MPSR [M⊙] σPSR [M⊙] Reference
PSR J0740+6620 2.14 0.1 [10]
PSR J0348+4032 2.01 0.04 [11]
PSR J1614-2230 1.908 0.016 [12]
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FIG. S1. Combined likelihood of the maximum mass. Shown are the constraints from radio observations of PSR J0740+6620 [10],
PSR J0348+4032 [11], and PSR J1614-2230 [12] (lower bounds) from the remnant classification of GW170817/AT2017gfo as a black hole [23]
(upper bound), and the joint constraint (black line).

Coherent incorporation of NICER data

For the NICER data [56], we use the results from Ref. [8] where a Bayesian inference approach was used to analyze the
energy-dependent thermal X-ray waveform of PSR J0030+0451. We employ the samples obtained with a three-oval, uniform-
temperature spots model [8, 57]. This model provides agreement with the observed NICER data and constrains the mass and
radius of PSR J0030+0451 to be M = 1.44+0.15

−0.14M⊙ and R = 13.02+1.24
−1.06km (both at 1σ uncertainty). The inferred mass-radius

posterior probability distributions are not dominated by systematic uncertainties and inferred parameters are in agreement for
different models [8, 58]; as a comparison, the results for the two-oval spot model are shown together with the three-oval spots
model in Fig. S2. Further comparisons can be found in Refs. [8, 58].
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The corresponding likelihood LNICER is given by

LNICER(EOS) = ∫ dMdR pNICER(M,R)π(M,R∣EOS)

= ∫ dMdR pNICER(M,R)δ(R −R(M,EOS))

= ∫ dM pNICER(M,R = R(M,EOS)),

(S2)

where pNICER(M,R) is the joint-posterior probability distribution of mass and radius of PSR J0030+0451 as measured by
NICER and we use the fact that the radius is a function of mass for a given EOS.

The joint-constraint likelihood LJoint combining the maximum mass and the NICER information is given by

LJoint(EOS) = LNICER(EOS) ×LMmax(EOS). (S3)

LJoint(EOS) is then taken as an input for our further analysis of GW170817, AT2017gfo, and GW190425.

FIG. S2. Comparison of different NICER analysis models. Shown are the 2D posterior probability distributions for the mass and radius of
PSR J0030+0451 inferred with a three-oval spot model (purple) and a two-oval spot model (orange) [8] in comparison with our EOS constraint
at this analysis step, cf. Fig. 1. Contours are shown at 68% and 95%.

Gravitational-Wave Analysis

We use the BILBY software [59] to reanalyze the observational data for GW170817 [60] and GW190425 [61]. We ran PARAL-
LEL BILBY [27] on 800 cores to obtain posterior probability distributions within a few hours on the high-performance computing
(HPC) clusters Minerva at the Max-Planck-Institute for Gravitational Physics, on SuperMUC-NG at the Leibniz Supercomputing
Centre, or on the HAWK cluster of the High-Performance Computing Center Stuttgart. The GW signals are analysed within a
frequency interval f ∈ [23,2048]Hz which covers the full inspiral of the BNS coalescence. Frequency-dependent spline calibra-
tion envelopes [62] are introduced into the waveform templates to counteract the potential systematics due to the uncertainties in
the detectors’ calibrations [63, 64]. We adopt the power spectral density estimated with BAYESWAVE [65, 66]. For our analysis,
we employ the IMRPhenomPv2 NRTidalv2 (NRTidalv2) waveform model [28].

AT2017gfo

Kilonova modelling

For the assessment of systematic uncertainties, we compare multiple light curve models [30, 67].
Model I (standard model): This model uses Spectral Energy Distributions (SEDs) simulated using the multi-dimensional

Monte Carlo radiative transfer code POSSIS [30]. We use a model grid with modifications to the underlying physics and the
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assumed geometry for the ejecta. Compared to previous work [30], we introduce two changes to the physics: thermalization
efficiencies are taken from Ref. [68] and the temperature is estimated in each grid cell and at each time from the mean intensity
of the radiation field (inferred from the density and local energy deposition from radioactive decay). In terms of the adopted
geometry, we run calculations for geometries similar to, e.g., Refs. [69–71], see Fig. S3, which were obtained from numerical
relativity simulations. A first component represents the dynamical ejecta, which have velocities ranging from the minimum
velocity of the dynamical ejecta vdyn

min = 0.08 c to the maximum velocity of the dynamical ejecta vdyn
max = 0.3 c, are characterised

by an ejecta massMdyn
ej , and have a lanthanide-rich composition within an angle ±Φ about the equatorial plane and a lanthanide-

free composition otherwise. The dynamical ejecta correspond to a high-velocity portion of the geometry adopted in Ref. [30].
The main source of opacity in kilonova ejecta is given by bound-bound line transitions, in which electrons move between two
bound states of atoms or ions. The bound-bound opacities κbb assumed for the dynamical ejecta are wavelength- and time-
dependent, reaching values of κbb = 1 cm2 g−1 at 1µm and 1.5 d for the lanthanide-rich and κbb = 5 × 10−3 cm2 g−1 at 1µm
and 1.5 d for the lanthanide-free portion of the ejecta [30]. A second spherical component represents the ejecta released from
the merger remnant and debris disk, extending from minimal velocities vpm

min = 0.025 c up to maximal velocities vpm
max = 0.08 c

and with an ejecta mass Mpm
ej . The bound-bound opacities adopted for the postmerger ejecta are intermediate [70] to those in

the lanthanide-rich and lanthanide-free components of the dynamical ejecta (κbb = 0.1 cm2 g−1 at 1µm and 1.5 d). SEDs and
corresponding light curves are then controlled by four parameters: Mdyn

ej , Mpm
ej , Φ, and the observer viewing angle Θobs.
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FIG. S3. Geometry employed in the kilonova description of Model I. Different colors refer to the different lanthanide fractions of the
individual ejecta components: tidal dynamical (red), polar dynamical (blue), and disk wind (purple).

Model II: This model adopts a kilonova without an additional wind ejecta component [30], which makes standardization and
extraction of the Hubble constant easier due to the smaller number of free parameters. Tighter constraints on the distance and
inclination angle are extracted compared to our standard choice (Model I); cf. Fig. S11.

Model III: This model adopts the radiative transfer model of Ref. [67] and employs a multi-dimensional Monte Carlo code
to solve the multi-wavelength radiation transport equation for an expanding medium. We use one spherically symmetric ejecta
component characterized by the mass of the ejecta Mej, the mass fraction of lanthanides Xlan, and the ejecta velocity vej. While
using only one ejecta component reduces the consistency between the observational data and the model prediction, it provides
easier standardization and therefore puts a tighter constraint on the measured distance, but no information about inclination can
be extracted due to the assumption of spherical symmetry.

Surrogate Construction: We use the approach outlined in Refs. [72, 73], where a Gaussian-Process-Regression framework is
employed; cf. Refs. [7, 74] for a detailed discussion.

We show the performance of our standard model (Model I) in Fig. S4 and find that it is consistent with the observed data. The
extracted properties of the ejecta are shown in Fig. S5. The disk wind ejecta are about 10 times larger than the dynamical ejecta.
The angle Φ peaks around 50○, while the observation angle Θobs peaks around 40○ (cf. Fig. S3).
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FIG. S4. Comparison of observed light curves of AT2017gfo with Model I. Predictions of Model I (shaded bands) are compared to
observational data (points) in different photometric bands collected in [74] using the original data of [75–87].

To connect the individual ejecta components to the different ejecta mechanisms, we assume that the total ejecta mass is a sum
of multiple components. The first component is related to the dynamical ejecta Mdyn

ej . The second component is caused by disk
wind ejecta and proportional to the disk mass surrounding the final remnant Mpm

ej = ζ Mdisk. For a conservative estimate, we
also add a third component α that we keep as a free parameter during the sampling procedure.

For the dynamical ejecta, we use the description in Ref. [16], while we assume that the disk wind ejecta is proportional to the
disk mass. Based on recent works on predicting the disk mass for systems with high mass ratios [88], we include an explicit
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Mej,wind, the opening angle between lanthanide-rich and lanthanide-poor dynamical ejecta components Φ, and the viewing angle Θobs at
10%, 32%, 68% and 95% confidence. For the 1D posterior probability distributions, we mark the median (solid lines) and the 90% confidence
interval (dashed lines) and report these above each panel.

mass-ratio dependence as described below.
The extracted binary properties are shown in Fig. S6, in which we report the chirp mass, the mass ratio, the deformability Λ̃,

the fraction of the dynamical ejecta α, the disk conversion factor ζ, and the maximum TOV mass.

Disk mass prediction

We utilise results from 73 numerical relativity simulations performed by different groups [88–91]. The full dataset is shown in
Fig. S7A which shows the disk mass versus the ratio of the total mass of the system and the threshold mass. The threshold mass
Mthreshold is the limiting total mass of the BNS system beyond which a prompt collapse to a black hole occurs. For the estimate
of the threshold mass, we use the predictions of Ref. [92]. We compare the data with the estimate of Ref. [16] confirming that an
increasing mass ratio leads to an increased disk mass [88]. We use a similar functional behavior to Ref. [16], but we incorporate
mass-ratio dependent fitting parameters such that

log10 (Mdisk

M⊙
) = max(−3, a(1 + b tanh(c − (m1 +m2)M−1

threshold

d
))) , (S4)
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FIG. S6. Estimated BNS properties for Model I. Similar to Fig. S5 but for the chirp mass Mc, mass ratio q, tidal deformability Λ̃, free
ejecta parameter α, disk conversion factor ζ, and maximum NS mass. Model II and Model III provide very similar binary properties.

with a and b given by

a = ao + δa ⋅ ξ ,
b = bo + δb ⋅ ξ ,

(S5)

where ao, bo, δa, δb, c, and d are free parameters. The parameter ξ is given by

ξ = 1

2
tanh (β (q̂ − q̂trans)) , (S6)

where q̂ ≡ m2/m1 ≤ 1 is the inverse mass ratio and β and q̂trans are free parameters. Fig. S7B shows how the model fitting
changes as the mass ratio changes.

The best-fitting model parameters are given by minimizing r = ⟨(log10(Mdisk) − log10(Mfit
disk))2⟩; we find ao = −1.581,

δa = −2.439, bo = −0.538, δb = −0.406, c = 0.953, d = 0.0417, β = 3.910, q̂trans = 0.900.
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Prior combination for distance measurement

Due to the strong correlation between the luminosity distance D and inclination ι0 across different analyses, we combine
the information on the D-ι0 plane and then marginalize over the inclination. We take the GRB170817A-VLBI measurement
pGRB(D, ι0) as the prior for the other two analyses. Therefore, the combined posterior probability distribution pcom(D, ι0) is
given by

pcom(D, ι0) = LGW(D, ι0) ×LEM(D, ι0) × pGRB(D, ι0), (S7)

where LGW and LEM are the likelihoods for the parameters (D, ι0) for the GW170817 and AT2017gfo analyses, respectively.
Because we are combing the information in the post-processing stage, we do not have access to the likelihood but only the

posterior probability distributions of GW170817, pGW, and AT2017gfo, pEM. Therefore, we evaluate the combined posterior
probability distribution by

pcom(D, ι0) =
pGW(D, ι0)

πGW
× pEM(D, ι0)

πEM
× pGRB(D, ι0), (S8)

where πGW and πEM are the priors for the parameters (D, ι0) used for analysing GW170817 and AT2017gfo, respectively.
The combined posterior probability distribution on the distance is then given by

pcom(D) = ∫ dι0 pcom(D, ι0) (S9)

which we use below in the Hubble constant measurement.

Estimation of the Hubble constant H0

The Hubble constantH0 relates the center-of-mass recession velocity of a galaxy relative to the cosmic microwave background
(CMB) [93] vr with the comoving distance Dc and the peculiar velocity vp by

vr =H0Dc + vp . (S10)

The distance between Earth and NGC 4993, the host galaxy of GW170817, is small, 40 Mpc [94], so we can approximate the
comoving distance with the luminosity distance D. Combining the distance measurement with the redshift z of the host galaxy,
z = 0.009783 ± 0.000023, constrains the Hubble constant [4].

GW170817’s host galaxy NGC 4993 belongs to the galaxy cluster ESO 508, which has a radial velocity of vr of 3327±72km
s−1 [95] and the peculiar velocity vp of NGC 4993 is 310 ± 69 km s−1 [96] . To reduce possible systematics introduced by
imperfect modelling of the bulk flow motion [96], we take the uncertainty on vp to be 150 km s−1 [97].

We model the likelihoods of vr, L(vr), and vp, L(vp), to be Gaussians given by

L(vr)∝ exp
⎛
⎝
−1

2
(vr − ⟨vr⟩

σvr
)

2⎞
⎠
, L(vp)∝ exp

⎛
⎝
−1

2
(vp − ⟨vp⟩

σvp
)

2⎞
⎠
, (S11)
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where ⟨vr⟩ = 3327 km s−1, σvr = 72 km s−1, ⟨vp⟩ = 310 km s−1 and σvp = 150 km s−1.
As a result, the multi-dimensional posterior probability distribution p(H0,D, vp) is given by

p(H0,D, vp) = L(H0,D, vp)π(H0,D, vp) ×
1

Ns(H0)

∝ exp
⎛
⎝
−1

2
(vp − ⟨vp⟩

σvp
)

2⎞
⎠
× exp

⎛
⎝
−1

2
(H0D + vp − ⟨vr⟩

σvr
)

2⎞
⎠

× p(D) × π(H0) × π(vp) ×
1

Ns(H0)
,

(S12)

where p(D), π(H0) and π(vp) are the posterior probability distribution of the distance, the prior on the Hubble constant, and
the prior on the peculiar velocity, respectively. Ns(H0) is the selection effect term [4]. We take π(H0) to be uniform in
[20,160] km s−1Mpc−1, π(vp) to be uniform in [−c, c] and Ns(H0) ∝ H3

0 . This choice of selection effect term is rooted in a
volumetric prior on the redshift [4].

For the posterior probability distribution of the distance, we take the posterior probability distribution based on the combined
analysis as described above, including the use of standardizable kilonovae light curves to measure their distances [31, 98]. Be-
cause we have a set of posterior probability distribution samples {di} that follow the posterior probability distribution pcom(D),
we obtain the marginalized posterior probability distribution p(H0, vp) by

p(H0, vp) = ∫ dDp(H0,D, vp)

= ∫ dDpcom(D)p(H0,D, vp)
pcom(D)

= ⟨p(H0,D, vp)
pcom(D) ⟩

{di}
,

(S13)

in which we approximate ∫ dDpcom(D) by an average over posterior probability distribution samples denoted ⟨⋯⟩{di}. We
sample over p(H0, vp) with EMCEE [99] and obtain the corner plot shown in Fig. S8.
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FIG. S8. Constraints on the Hubble constant. Corner plot of the inferred H0-vp posterior probability distribution using the inferred distance
from our analysis, cf. Fig. 2. For the 1D posterior probability distributions, we mark the median (solid lines) and the 90% confidence interval
(dashed lines) and report these above each panel.
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dashed lines. The main difference between the posterior probability distributions inferred with the three waveform models is the distribution
of Λ̃, which is expected due to the different tidal description of the three models.

As discussed in the main text, we use the IMRPhenomPv2 NRTidalv2 (NRTidalv2) waveform model. The approximant
uses the description of tidal effects introduced in Ref. [28] to augment the precessing binary black-hole waveform model [100].
NRTidalv2 has a different tidal and spin description to the IMRPhenomPv2 NRTidal model [101, 102], which was the
waveform model employed by the LIGO Scientific and Virgo Collaborations to interpret GW170817 [5, 29, 103–105] and
GW190425 [6]. We present the parameter-estimation results for GW170817 in Fig. S9. For comparison, we also show the
posterior probability distributions obtained with the IMRPhenomPv2 NRTidal waveform model to allow for an assessment
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of NRTidalv2. We find no noticeable difference in the measured component masses, distance, and inclination; cf. Tab. S2.
The agreement is likely caused by the same underlying point-particle base line of both models. There is a small difference
in the estimated tidal deformability, where NRTidalv2 predicts a slightly larger tidal deformability which consequently re-
sults in a slightly larger radius estimate. This behavior is expected because the NRTidalv2 approximant incorporates slightly
smaller tidal contributions for the same physical parameters than the original IMRPhenomPv2 NRTidal model, which con-
sequently leads to a larger estimated tidal deformability. In addition, we show posterior probability distributions obtained with
the SEOBNRv4T waveform model [106], where we employ its surrogate model of Ref. [107] for the parameter estimation runs.
SEOBNRv4T has a point-particle and tidal description that differs from IMRPhenomPv2 NRTidal and NRTidalv2 and,
therefore, provides an independent check for possible systematic uncertainties. We find no noticeable difference between pa-
rameters, suggesting that no systematic errors are introduced by the choice of waveform model in our analysis; cf. Fig. S9 and
Tab. S2.

TABLE S2. Summary of the parameters of GW170817 inferred with different waveform models. We give the median of the parameters
of GW170817, together with their corresponding 90% credible intervals for analyses using different waveform models.

Parameter NRTidal NRTidalv2 SEOBNRv4T

Primary mass m1 [M⊙] 1.48+0.15−0.10 1.48+0.17−0.10 1.45+0.16−0.07

Secondary mass m2 [M⊙] 1.26+0.09−0.11 1.26+0.09−0.12 1.29+0.07−0.12

Mass-weighted tidal deformability Λ̃ 357.86+259.49−173.26 370.54+296.33−160.57 349.25+383.87−129.77

Luminosity distance D [Mpc] 37.85+9.95−16.95 37.33+10.29−16.46 36.81+9.30−13.69

Inclination ι0 [deg] 143.41+29.07−30.31 142.19+30.08−29.15 141.21+27.48−24.48

For the analysis of GW190425 we also use the NRTidalv2 model. In Fig. S10, we show extracted source parameters
for GW190425 when we include or do not include the GW170817 and AT2017gfo information (chirp mass, mass ratio, and
EOS constraints); cf. Tab. S3. The extracted source parameters differ in the estimated tidal deformability Λ̃, and the inclu-
sion of GW170817 and AT2017gfo in our analysis leads to a smaller value. The incorporation of additional information from
GW170817 and AT2017gfo changes the prior of the GW190425 analysis such that NSs with large radii (large tidal deformabili-
ties) are already disfavored.

TABLE S3. Summary of the parameters of GW190425 with and without inclusion of GW170817/AT2017gfo. We give the me-
dian of the parameters of GW190425, together with their corresponding 90% credible intervals for analyses with and without input from
GW170817/AT2017gfo.

Parameter without
GW170817/AT2017gfo

with GW170817/AT2017gfo

Primary mass m1 [M⊙] 1.76+0.20−0.11 1.77+0.19−0.10

Secondary mass m2 [M⊙] 1.55+0.09−0.15 1.54+0.10−0.15

Mass-weighted tidal deformability Λ̃ 140.80+144.22−64.73 117.90+114.60−49.24

Luminosity distance D [Mpc] 152.87+74.52−73.99 159.08+71.91−75.73

Inclination ι0 [deg] 79.22+84.81−64.67 64.54+99.66−49.88

Modelling of AT2017gfo

There is good agreement between the three kilonova models, which differ mostly in the predicted inclination and distance.
We show the distance-inclination measurements in Fig. S11. Model I is the least constraining due to the additional complexity
of the wind ejecta component. Model III is spherically symmetric and therefore only enables a distance measurement. All three
models agree within their statistical uncertainties, which suggests that our analysis is dominated by statistical effects and not
systematics.

For the analysis of the non-observed EM counterpart of GW190425, we use the same kilonova analysis as discussed above, but
restricted to Model I. We use information from the Asteroid Terrestrial-impact Last Alert System (ATLAS) [108] that covered
37%, the Gravitational-wave Optical Transient Observer (GOTO) [109] that covered 30%, the Master Global Robotic Telescopes
Net (MASTER) [110] that covered 37%, and the Zwicky Transient Facility (ZTF) [111] that covered 25% of the sky area derived
from the GW data to obtain apparent magnitude limits on potential counterparts from optical surveys. An exact computation
of the total sky coverage is not possible because not all groups released their covered tiles and search information. However,
the published limits, together with the distance information from the GW event, lead to limits on the absolute magnitude of a
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FIG. S10. Marginalized 1D and 2D posterior probability distributions of GW190425’s parameters. Same as Fig. S9 but for the posterior
probability distribution of GW190425’s parameters obtained without (blue) and with (orange) the inclusion of GW170817/AT2017gfo. With
the inclusion of GW170817/AT2017gfo, the tidal measurement is more tightly constrained.

potential kilonova [7]. Accounting for the distance of the transient, we rule out all ejecta parameters for which the predicted
magnitude would exceed the obtained apparent magnitude limit.

Ordering of the analysis steps

We test the effect of changing the order of analysis steps in Fig. 1 by moving the NICER results to the final stage. To reduce
computational costs, we focus on the combination of GW170817, AT2017gfo, NICER, and the maximum-mass constraints.
Fig. S12 shows that the measured radius is slightly larger for our original analysis than for our analysis in which NICER results
are included in the final step. This change is due to the kernel density estimation that is used to obtain the prior for our individual
analysis steps. However, the 90% confidence intervals remain unchanged. We conclude that our method is robust to the order of
the procedure.
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(red) at 68% and 95% confidence levels. Model I is the least constraining.
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FIG. S12. Radius constraints under interchange of the individual analysis steps. The blue line is the same as in Fig. 1H. We show the
highest probability interval of 90% confidence and the median of the posterior probability distribution.

Propagation of systematic uncertainties

We also show how small differences in individual analysis steps influence the entire analysis. We analyse the GW events
GW170817 and GW190425 with the SEOBNRv4T waveform model, but keep all other steps the same. Figure S13 shows
our final result for the radius using IMRPhenom NRTidalv2 and SEOBNRv4T. IMRPhenom NRTidalv2 predicts slightly
larger radii than SEOBNRv4T but the difference is well within uncertainties and remains almost unchanged when analysing
AT2017gfo and GW190425.
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FIG. S13. Radius constraints for different gravitational-waveform models. Similar to Fig. S12 but for different gravitational-wave models
used in the analyses of GW170817 and GW190425.

Given the small sensitivity of our results to the choice of the GW model (Fig. S13), the order of the analysis steps (Fig. S12),
and the consistent results employing different kilonova models (Fig. S11), we conclude that our results are generally robust.
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