60 research outputs found

    Connecting distinct realms along multiple dimensions: A meta-ecosystem resilience perspective

    Get PDF
    Resilience research is central to confront the sustainability challenges to ecosystems and human societies in a rapidly changing world. Given that social-ecological problems span the entire Earth system, there is a critical need for resilience models that account for the connectivity across intricately linked ecosystems (i.e., freshwater, marine, terrestrial, atmosphere). We present a resilience perspective of meta-ecosystems that are connected through the flow of biota, matter and energy within and across aquatic and terrestrial realms, and the atmosphere. We demonstrate ecological resilience sensu Holling using aquatic-terrestrial linkages and riparian ecosystems more generally. A discussion of applications in riparian ecology and meta-ecosystem research (e.g., resilience quantification, panarchy, meta-ecosystem boundary delineations, spatial regime migration, including early warning indications) concludes the paper. Understanding meta-ecosystem resilience may have potential to support decision making for natural resource management (scenario planning, risk and vulnerability assessments)

    Biotic homogenisation and differentiation as directional change in beta diversity: synthesising driver–response relationships to develop conceptualmodels across ecosystems

    Get PDF
    Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed ‘beta diversity’) is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se. biodiversity, beta diversity, biotic homogenisation, biotic differentiation, species assemblage, turnoverpublishedVersio

    Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities

    Get PDF
    Advances in metacommunity theory have made a significant contribution to understanding the drivers of variation in biological communities. However, there has been limited empirical research exploring the expression of metacommunity theory for two fundamental components of beta diversity: nestedness and species turnover. In this paper, we examine the influence of local environmental and a range of spatial variables (hydrological connectivity, proximity and overall spatial structure) on total beta diversity and the nestedness and turnover components of beta diversity for the entire macroinvertebrate community and active and passively dispersing taxa within pond habitats. High beta diversity almost entirely reflects patterns of species turnover (replacement) rather than nestedness (differences in species richness) in our dataset. Local environmental variables were the main drivers of total beta diversity, nestedness and turnover when the entire community was considered and for both active and passively dispersing taxa. The influence of spatial processes on passively dispersing composition, total beta diversity and nestedness was significantly greater than for actively dispersing taxa. Our results suggest that species sorting (local environmental variables) operating through niche processes was the primary mechanism driving total beta diversity, nestedness and turnover for the entire community and active and passively dispersing taxa. In contrast, spatial factors (hydrological connectivity, proximity and spatial eigenvectors) only exerted a secondary influence on the nestedness and turnover components of beta diversity

    Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape

    Get PDF
    Understanding the spatial patterns and environmental drivers of freshwater diversity and community structure is a key challenge in biogeography and conservation biology. However, previous studies have focussed primarily on taxonomic diversity and have largely ignored the phylogenetic and functional facets resulting in an incomplete understanding of the community assembly. Here, we examine the influence of local environmental, hydrological proximity effects, land-use type and spatial structuring on taxonomic, functional and phylogenetic (using taxonomic relatedness as a proxy) alpha and beta diversity (including the turnover and nestedness-resultant components) of pond macroinvertebrate communities. Ninety-five ponds across urban and non-urban land-uses in Leicestershire, UK were examined. Functional and phylogenetic alpha diversity were negatively correlated with species richness. At the alpha scale, functional diversity and taxonomic richness were primarily determined by local environmental factors while phylogenetic alpha diversity was driven by spatial factors. Compositional variation (beta diversity) of the different facets and components of functional and phylogenetic diversity were largely determined by local environmental variables. Pond surface area, dry phase length and macrophyte cover were consistently important predictors of the different facets and components of alpha and beta diversity. Our results suggest that pond management activities aimed at improving biodiversity should focus on improving and/or restoring local environmental conditions. Quantifying alpha and beta diversity of the different biodiversity facets facilitates a more accurate assessment of patterns in diversity and community structure. Integrating taxonomic, phylogenetic and functional diversity into conservation strategies will increase their efficiency and effectiveness, and maximise biodiversity protection in human-modified landscapes

    The three Rs of river ecosystem resilience : Resources, recruitment, and refugia

    Get PDF
    This review article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionResilience in river ecosystems requires that organisms must persist in the face of highly dynamic hydrological and geomorphological variations. Disturbance events such as floods and droughts are postulated to shape life history traits that support resilience, but river management and conservation would benefit from greater understanding of the emergent effects in communities of river organisms. We unify current knowledge of taxonomic-, phylogenetic-, and trait-based aspects of river communities that might aid the identification and quantification of resilience mechanisms. Temporal variations in river productivity, physical connectivity, and environmental heterogeneity resulting from floods and droughts are highlighted as key characteristics that promote resilience in these dynamic ecosystems. Three community-wide mechanisms that underlie resilience are (a) partitioning (competition/facilitation) of dynamically varying resources, (b) dispersal, recolonization, and recruitment promoted by connectivity, and (c) functional redundancy in communities promoted by resource heterogeneity and refugia. Along with taxonomic and phylogenetic identity, biological traits related to feeding specialization, dispersal ability, and habitat specialization mediate organism responses to disturbance. Measures of these factors might also enable assessment of the relative contributions of different mechanisms to community resilience. Interactions between abiotic drivers and biotic aspects of resource use, dispersal, and persistence have clear implications for river conservation and management. To support these management needs, we propose a set of taxonomic, phylogenetic, and life-history trait metrics that might be used to measure resilience mechanisms. By identifying such indicators, our proposed framework can enable targeted management strategies to adapt river ecosystems to global change

    Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research

    Get PDF

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.publishedVersio

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe
    • 

    corecore