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Abstract 

 

Understanding the spatial patterns and environmental drivers of freshwater diversity and community 

structure is a key challenge in biogeography and conservation biology. However, previous studies 

have focussed primarily on taxonomic diversity and have largely ignored the phylogenetic and 

functional facets resulting in an incomplete understanding of the community assembly. Here, we 

examine_the influence of local environmental, hydrological proximity effects, land-use type and 

spatial structuring on taxonomic, functional and phylogenetic (using taxonomic relatedness as a 

proxy) alpha and beta diversity (including the turnover and nestedness-resultant components) of pond 

macroinvertebrate communities. Ninety-five ponds across urban and non-urban land-uses in 

Leicestershire, UK were examined. Functional and phylogenetic alpha diversity were negatively 

correlated with species richness. At the alpha scale, functional diversity and taxonomic richness were 

primarily determined by local environmental factors while phylogenetic alpha diversity was driven by 

spatial factors. Compositional variation (beta diversity) of the different facets and components of 

functional and phylogenetic diversity were largely determined by local environmental variables. Pond 

surface area, dry phase length and macrophyte cover were consistently important predictors of the 

different facets and components of alpha and beta diversity. Our results suggest that pond 

management activities aimed at improving biodiversity should focus on improving and/or restoring 

local environmental conditions. Quantifying alpha and beta diversity of the different biodiversity 

facets facilitates a more accurate assessment of patterns in diversity and community structure. 

Integrating taxonomic, phylogenetic and functional diversity into conservation strategies will increase 

their efficiency and effectiveness, and maximise biodiversity protection in human-modified 

landscapes. 
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Highlights 

 

• Functional and taxonomic alpha diversity were determined by local environmental factors 

• Functional and phylogenetic beta diversity were determined by local environmental factors. 

• Functional and phylogenetic beta diversity were determined by local environmental factors. 

• Pond management activities should focus on improving local environmental conditions 

• Taxonomic, functional and phylogenetic diversity should be integrated into conservation 

   strategies. 

 

 

        1. Introduction 

 

Understanding the spatial patterns and environmental drivers of diversity and community assembly 

are central to the fields of community ecology, biogeography and conservation biology (Richardson 

Whittaker, 2010; Socolar et al., 2016; Soininen, 2016). Examining spatial biodiversity patterns has 

typically been based on taxonomic richness (Ricklefs, 2004; Hill et al., 2018). However, focussing 

primarily on the taxonomic facet fails to acknowledge that biotic assemblages are composed of taxa 

with different evolutionary histories and functional roles within ecosystems (Cardoso et al., 2014), 

which may not provide a complete or comprehensive understanding of the community assembly 

(Heino and Tolonen, 2017a). Current diversity measures largely ignore the fact that a change in 

species numbers or environmental conditions can have a significant effect on evolutionary legacy or 

ecosystem functioning, as taxonomic diversity treats species as evolutionarily equivalent and 

functionally similar entities (Arnan et al., 2017). Recently, research has begun to recognise that 

multiple aspects of biodiversity, such as phylogenetic and functional diversity, need to be specifically 

considered and that in doing so it may provide complementary information to increase our 

understanding of the mechanisms shaping patterns of biodiversity (Meynard et al., 2011; Cisneros et 

al., 2015; Heino and Tolonen, 2017b;). Phylogenetic diversity reflects the evolutionary history of an 

ecological community (Webb et al., 2002) and as a result, communities with identical taxonomic 

diversity may demonstrate significant phylogenetic diversity depending on the evolutionary history of 

the organisms at specific sites (Cardoso et al., 2014). Functional diversity refers to the aspects of 

biodiversity that influence ecosystem functioning and incorporates the diversity of phenotypic 

(morphological and physiological) and ecological traits within a biotic community (Petchey and 

Gaston, 2006). Both mismatches and congruencies between functional, phylogenetic and taxonomic 

diversity have been recorded among biotic communities (Devictor et al., 2010). For example, sites 

with high taxonomic richness may be characterized by low functional diversity, as different taxa 



among sites may possess similar functional roles (Villeger et al., 2012); while other studies have 

shown taxonomic richness to be correlated to phylogenetic and functional diversity (Heino and 

Tolonen 2017a). Incorporating functional and phylogenetic approaches into biodiversity research may 

provide a greater understanding of ecosystem functioning-environment associations (Dray et al., 

2014), variation in community productivity (Cadotte et al., 2009), the resilience of ecosystem 

functioning (Thornhill et al., 2018), and the evolutionary constraints on patterns in community 

composition (Webb et al., 2002). 

 

Biodiversity can be divided into alpha, gamma, and beta diversity (Whittaker, 1960. Gamma diversity 

represents the total species diversity in the landscape (Whittaker, 1960). Alpha diversity represents the 

taxonomic richness within an individual (local) site; while beta diversity refers to the compositional 

variation in communities among sites within a pre-determined area (Whittaker, 1960). Total beta 

diversity can be further partitioned into nestedness and turnover components (Baselga, 2010). Species 

turnover refers to the replacement of species from one site to another; while the nestedness component 

of beta diversity refers to taxa in species poor sites representing a subset of species within high 

diversity sites (Baselga et al., 2012; Legendre, 2014). In this study, we focussed on alpha and beta 

diversity, as this enables an understanding of the processes that drive phylogenetic, functional and 

taxonomic diversity, and compositional variation at the gamma scale (Heino and Tolonen, 2017a, b). 

At a local (alpha) scale, phylogenetic, functional, and taxonomic diversities have been shown to vary 

slightly and to be significantly influenced by different environmental variables in lentic 

macroinvertebrate metacommunities (Heino and Tolonen 2017a). Recent pond and lake studies have 

also found that phylogenetic, functional and taxonomic beta diversity (and their turnover and 

nestedness components) are typically explained by local environmental factors at the landscape-scale 

(Gianuca et al., 2017; Heino and Tolonen 2017b). However, at larger scales, spatial variables, such as 

those associated with dispersal limitation, may explain more of the variation in macroinvertebrate 

assemblages compared to environmental gradients (Cai et al., 2018). Despite this, to our knowledge 

no studies have examined the influence of environmental and spatial variables on the turnover and 

nestedness components of macroinvertebrate phylogenetic and functional beta diversity within pond 

habitats (defined here as lentic waterbodies <2 ha in area). This approach may further increase our 

understanding of community assembly processes in small lentic ecosystems (Myers et al. 2013; 

Gianuca et al., 2018). 

 

Biodiversity conservation almost exclusively focusses on taxonomic diversity (EC, 1992; Strayer 

Dudgeon, 2010), despite global environmental changes influencing ecosystem functioning (often 

independently from changes in taxonomic diversity) and phylogenetic diversity through a loss of 

evolutionary history and opportunities for future diversification (Devictor et al., 2010). Further, 

protected areas delineated primarily on taxonomic diversity may be incongruent with sites of high 

functional or phylogenetic diversity, suggesting that focussing solely on taxonomic diversity for 

conservation decisions may be based on an incomplete representation of biodiversity (Devictor et al., 

2010; Strecker et al., 2011; Arnan et al., 2017). Functional and phylogenetic diversity can be better 



predictors of ecosystem productivity, vulnerability and stability than taxonomic diversity, and may 

therefore provide critical information, and contribute to the identification of sites that provide more 

effective, resilient and comprehensive biodiversity conservation (Strecker et al., 2011). Conservation 

of pond habitats has been demonstrated to be most effective at the landscape-scale, reflecting the high 

beta diversity (species turnover) and environmental heterogeneity (Williams et al., 2003; Hill et al., 

2017). Examining beta diversity (and the nested and turnover components) of all three facets of pond 

diversity could provide additional information required to increase the effectiveness of landscape- 

scale pond conservation. However, the contribution of functional and phylogenetic alpha and beta 

diversity to biodiversity conservation remains poorly quantified across freshwater habitats. 

 

In this study, we examined the relative influence of local environmental and spatial variables on 

taxonomic, functional and phylogenetic facets of alpha and beta diversity (and their turnover and 

nestedness-resultant components). We hypothesised: (1) that local environmental factors would 

overcome the effects of spatial and landscape-type factors for taxonomic, functional and phylogenetic 

(taxonomic relatedness) alpha diversity, and (2) that local environmental factors would be the most 

important factor driving phylogenetic (taxonomic relatedness) and functional total beta diversity, and 

the nestedness-resultant and turnover components of beta diversity, based on the results of previous 

studies (Heino and Tolonen 2017a; Hill et al., 2017; Gianuca et al 2018; Rocha et al., 2018). Finally, 

we discuss the implications of the biodiversity-environment and biodiversity-space relationships for 

ecological conservation and management in human-modified landscapes. 

 

 
 

       2. Materials and Methods 

2.1 Study area 

A total of 95 ponds were studied across a c. 280km2 area in Leicestershire, UK (for a detailed outline 

of the study area, see Hill et al., 2017). Ponds selected for study were located in: (1) urban landscapes 

(Loughborough: ~35 km2, approx. population of 60,000) including urban parks, school grounds, 

roadsides, high density commercial developments (such as sustainable urban drainage ponds in city 

centres and industrial areas) and domestic gardens, and (2) non-urban landscapes including floodplain 

meadows (located in nature reserves protected for nature conservation), woodland (oak or mixed 

woodland - oak, silver birch, alder and European ash) and agricultural land (dominated by one or two 

crops such as rapeseed or wheat). Considerable variability in environmental characteristics was 

recorded among the ponds selected for study (Table 1). 

 

2.2 Environmental data collection and spatial variables 

A total of 10 local environmental variables measured within each pond comprised: surface water area 

(m2), mean water depth (cm), percentage of pond covered by submerged, emergent and/or floating 

macrophytes, dissolved oxygen (percentage saturation), pH, percentage of pond margin shaded, dry 

phase length (duration that the pond was dry over the 12-month period - 27 ponds dried for between 3 



and 7 months) and conductivity (_ S cm -1). A total of four spatial variables were included in this 

study; pond isolation, pond connectivity, PCNM eigenvectors and landscape type. Pond isolation (the 

number of aquatic habitats within 500m of the sampled pond) and pond connectivity (the number of 

other aquatic habitats hydrologically connected through surface links to the focal pond site), defined 

as ‘hydrological proximity effects’ (Hill et al., 2017) were measured at each site. The hydrological 

proximity effects were recorded using aerial imagery (Google Earth, 2017), ordnance survey maps 

and field observations. While every attempt was taken to record all aquatic habitat within 500 m of 

each study site, we acknowledge that a small number of ephemeral and garden ponds may have been 

overlooked in this study, as they are often not recorded on national maps (e.g., OS MasterMap) and 

difficult to identify from satellite imagery. Principal coordinates of neighbour matrices (PCNM; a 

total of 14 eigenvectors were derived in this study) were created using the PCNM package in R 

(Borcard and Legendre 2002; Legendre et al., 2012). PCNM creates a series of spatial variables to 

quantify the overall spatial structure in biological communities. The truncation threshold was 

calculated as the longest distance in the minimum spanning tree (Legendre et al., 2012), and only the 

eigenvectors that model positive spatial autocorrelation were used in the statistical analyses. Spatial 

eigenvectors have been suggested to better capture spatial patterns in ecological communities than 

latitude and longitude as the eigenvectors can represent the spatial structuring of study sites at a range 

of scales (Borcard and Legendre 2002, Dray et al. 2012). Each pond’s location within the urban or 

non-urban landscape was recorded. 

 

2.3 Macroinvertebrate field surveys 

Aquatic macroinvertebrate samples were taken during the spring (March), summer (June) and autumn 

(September) seasons in 2012, following the National Pond Survey sampling methods (Biggs et al., 

1998). Full details of field sampling are outlined in Hill et al., (2015) and summarised here. Sampling 

time allocated at each pond site was proportional to its surface area; for every 10 m2 surface area 30 

seconds of sampling time was allocated up to 50 m2, with ponds greater than 50 m2 sampled for 3 

minutes. The sweep technique was used to collect samples from the available mesohabitats (e.g., open 

water, emergent macrophytes, submerged macrophytes and floating macrophytes) in each pond. 

Sampling time at each pond was divided equally among the mesohabitats present. However, if one 

mesohabitat dominated, sampling time was proportionally divided to reflect this (Biggs et al., 1998). 

Mesohabitat samples from each pond were pooled for the final analyses. A visual examination of 

larger substrates that could not be sampled with a pond net (e.g., wood debris and rocks) was 

undertaken at each pond for a maximum of 60 seconds. The majority of macroinvertebrate taxa were 

identified to species level, however Physidae, Planariidae and Diptera larvae were resolved to family 

level and Oligochaeta, Collembola and Hydrachnidiae were recorded as such. Seasonal 

macroinvertebrate data from individual ponds were pooled (see Hill et al., (2017) Appendix part 1 for 

preliminary analyses of individual season macroinvertebrate data) and the mean values of 

environmental parameters were derived. 

 



2.4 Macroinvertebrate trait and phylogenetic data 

Macroinvertebrate functional traits were derived from a trait database developed by Tachet et al., 

(2010) and applies to fauna residing within European freshwater habitats (Usseligo-Polatera et al., 

2000)Functional traits are reported here by their ‘grouping feature’ (represents a functional trait 

category) and ‘traits’ (represents the modalities residing within individual grouping features) (see 

Schmera et al., 2015; White et al., 2017 for terminology). A total of 11 grouping features were used in 

this study representing the phenotypic properties of fauna: body size, life cycle duration, potential 

number of cycles per year, aquatic stages, reproduction, dispersal, resistance forms, respiration, 

locomotion-substrate relation, food and feeding habit. A total of 63 traits from the 11 grouping 

features were used in this study (see Table S1 for species traits for each grouping feature). These 

biological grouping features and traits were selected as they provide the fundamental biological 

characteristics of freshwater macroinvertebrates (Tachet et al., 2010; Merrit and Cummins, 1996), as 

opposed to their ecological preferences. Trait information within the database is typically available at 

species- or genus-level and only taxa resolved to an equal or lower taxonomic resolution within this 

study were included within the functional analyses. As such, a total of 11 taxa out of 228 were 

excluded as they were deemed to possess high functional variability (or were identified at a too coarse 

level); Ceratopogonidae, Chaoboridae, Chironomidae, Chrysomelidae, Dixidae, Empididae, 

Simuliidae, Diptera Other, Hydrachnidiae, Planariidae, Collembola, Hydrophilidae larvae, Dytiscidae 

larvae, Scirtidae larvae and Sphaeriidae. In addition, trait information was lacking for some taxa: 

Dicranota sp., Cercyon marinus, Callicorixa wollastoni, Succinea putris, and Zonitidae. Where trait 

information was only available for macroinvertebrates at the genus level, species were aggregated to 

the genus level. 

 

As the true phylogenetic tree was unavailable for the macroinvertebrate taxa recorded in this study, 

taxonomic distance based on the path lengths in the taxonomic trees was used as a proxy for the true 

phylogenetic tree. The derived taxonomic tree used equal branch lengths and seven taxonomic levels 

(species, genus, family, suborder, order and phylum), which were based on numerous aquatic 

macroinvertebrate identification keys (Macan 1977; Elliot and Mann 1979; Hynes, 1984; Fres, 1985; 

Elliot et al., 1988; Friday, 1988a; Savage, 1989; Smith, 1989; Gledhill et al., 1993; Edington and 

Hildrew 1995; Wallace et al., 2003; Cham, 2009 and; Foster and Friday 2011). 

 

2.5 Statistical analyses 

2.5.1 Alpha diversity 

All statistical analyses were performed in the R environment (R Core Team, 2016). The taxa 

abundance macroinvertebrate dataset was converted into a presence-absence dataset prior to alpha and 

beta diversity statistical analyses (see Fig. S1, S2 and S3 for the taxonomic, functional and 

phylogenetic alpha and beta diversity statistical procedures). 

 

Using the derived taxonomic tree outlined above (as a surrogate for a phylogenetic tree), taxonomic 



distances between species were calculated using the function taxa2dist in the vegan package (Oksanen 

et al., 2017). To determine trait distances between species, the Gower dissimilarity was calculated 

using the original trait data, using the function gowdis from the FD package (Laliberte et al., 2014), 

Mean pairwise distance (MPD) indices were used to calculate observed taxonomic relatedness (proxy 

for phylogenetic diversity) among sites (using the taxonomic distances between species), and 

functional alpha diversity (using the Gower dissimilarity of the trait dataset and species presence 

abundance data). MPD for taxonomic relatedness and functional data was calculated using the 

function ses.mpd from the picante package (Kembel et al., 2016). MPD was chosen as the alpha 

diversity index in this study as the ses.mpd function can use any species-by-species distance matrix 

(e.g., Gower dissimilarity) as input in addition to a site-by-species matrix. Taxonomic relatedness has 

been used in other studies examining phylogenetic diversity and demonstrated to be a suitable proxy 

for true phylogeny when it is unavailable (Ruhi et al., 2013; Heino and Tolonen 2017a; Cai et al. 

2018; Heino and Tolonen 2018). Taxonomic alpha diversity was calculated as the taxonomic richness 

(number of taxa) in each sampled site. 

 

To examine the environmental variables significantly explaining the variation in taxonomic, 

functional and phylogenetic alpha diversity, partial linear regression was undertaken. Initially, 

separate partial linear regression analyses (for taxonomic, functional and phylogenetic alpha diversity) 

employing a forward selection process (using the function ordiR2step in the vegan package) was 

undertaken to identify the significant local environmental variables, hydrological proximity effects, 

and spatial eigenvectors influencing taxonomic, phylogenetic and functional alpha diversity. Three 

stopping rules were employed when applying this forward selection method: (1) once the adjusted R2 

begins to decrease, (2) once the permutational significance level was exceeded ( = 0.05) and (3) once 

the full model adjusted R2 was exceeded (Hill et al., 2017; Oksanen et al., 2017). Environmental 

parameters were log10 transformed to downweight extreme values consistently across all abiotic 

parameters (Legendre and Birks 2012). Variance partitioning analysis (Borcard et al., 1992), based on 

partial linear regression, was undertaken to identify the pure and shared contribution of 4 sets of 

predictors; (1) local environmental conditions, (2) hydrological proximity effects, (3) landscape type 

and (4) spatial structuring (PCNM eigenvectors) on phylogenetic and functional alpha diversity 

(observed MPD). Variance partitioning analysis was performed using the varpart function in the 

vegan package. Statistical significance of the four sets of predictors and the full model were 

calculated using the anova function. The adjusted R2 fractions are presented in this study as they 

provide unbiased estimations of explained variation which corrects for the number of explanatory 

variables (Peres-Neto et al., 2006). 

 

Pearson correlation (r) was calculated (using the function cor.test in the stats package) to examine the 

correlation between the taxonomic, functional and phylogenetic alpha diversity among pond sites. 

Moran’s I correlograms were constructed to examine the degree of spatial autocorrelation of 

phylogenetic alpha diversity, functional alpha diversity of the MPD for phylogenetic and functional 



communities, using the function correlog in the pgirmess package (Giraudoux, 2017). 

 

2.5.2 Beta diversity 

 

We examined variation in macroinvertebrate phylogenetic and functional total beta diversity, and the 

turnover and nestedness-resultant components. RDA was chosen as the constrained ordination method 

to analyse the variation in phylogenetic and functional beta diversity in relation to local and spatial 

explanatory variables (Legendre and Legendre 2012). Taxonomic beta diversity was not analysed here 

as it has previously been examined (Hill et al. 2017). For phylogenetic beta diversity analyses, 

taxonomic distance (as a proxy for true phylogeny) between macroinvertebrate taxa was calculated 

using the taxa2dist function (Heino and Tolonen 2017b). A taxonomic tree was constructed by 

building a clustering tree using the function hclust (using the ‘complete’ agglomeration method), and 

 converting the clustering tree into a taxonomic tree using as.phylo function in the ape package 

(Paradis et al., 2017). Pair-wise distance matrices based on the Sørensen dissimilarity (using a site-by 

species matrix and the taxonomic tree), accounting for the phylogenetic nestedness-resultant and 

turnover components of beta diversity, and total beta diversity, were calculated using the 

phylo.beta.pair function in the betapart package (Baselga et al., 2017). Principal coordinate analyses 

(PCoA, with Lingoes correction accounting for negative eigenvalues) was undertaken on the three 

taxonomic distance matrices (turnover, nestedness-resultant and total beta diversity) using the 

function pcoa in the ape package (as performed by Hill et al., 2017)_to derive ‘taxonomic vectors’ 

describing species taxonomic relatedness. The principal coordinates (eigenvectors) for the three 

taxonomic dissimilarity matrices were used as response variables in separate variance partitioning 

analyses. For functional beta diversity analyses, the dimensionality of the original trait data was 

reduced, and trait distances between species were calculated using the Gower distance (Gower, 1971) 

using the function gowdis. PCoA was undertaken on the trait Gower dissimilarity matrix using the 

function pcoa. Only the first two PCoA vectors were used in calculating convex hull volumes shaping 

any two communities in functional space, as further dimensions caused overly long computational 

times. Three functional pair-wise distance matrices (using a site-by-species matrix and quantitative 

traits data, in this case two PCoA trait vectors) accounting for the functional turnover and nestedness 

resultant components of beta diversity, and total beta diversity were calculated using the 

 functional.beta.pair function in the betapart package (based on Sørensen dissimilarity; Heino and 

Tolonen 2017b). On each of the functional dissimilarity matrices (nestedness-resultant, turnover and 

total beta diversity), PCoA analyses were undertaken using the function pcoa. The principal 

coordinates (eigenvectors) for the three functional dissimilarity matrices were used as response 

variables in separate variance partitioning analyses. 

 

Prior to variance partitioning analysis, environmental variables were transformed (log10). RDA 

analyses using a forward selection process (using the function ordiR2step) were performed on 

functional and phylogenetic total beta diversity, and the functional and phylogenetic nestedness 

resultant and turnover matrices (as represented by the corresponding principal coordinates, see 



above), to identify the significant local environmental and spatial parameters (hydrological proximity 

effects, PCNM eigenvectors). To examine the individual and shared contribution of local 

environmental variables, hydrological proximity effects, land-use type and spatial structuring (PCNM 

eigenvectors) on the functional and phylogenetic total beta diversity, turnover and nestedness 

resultant dissimilarity matrices (based on the PCoA eigenvectors), variance partitioning analysis were 

undertaken as above. Separate variance partitioning analysis was undertaken on: (1) total phylogenetic 

beta diversity, (2) total functional beta diversity, (3) the functional nestedness-resultant component, 

(4) the phylogenetic nestedness-resultant component, (5) phylogenetic turnover, and (6) functional 

turnover. Significance of the full model and the contributions of the predictor groups (local 

environmental variable, land-use type, hydrological proximity effects and PCNM eigenvectors) was 

undertaken for each of the variance partitioning analyses using the anova function. 

 

      3. Results 

In total, 228 macroinvertebrate taxa were recorded from 68 families and 21 orders from the studied 

pond sites. In terms of taxonomic richness, communities were dominated by insects, particularly 

Coleoptera (75 taxa), Hemiptera (32 taxa), Trichoptera (35 taxa), Odonata (19 taxa) and Diptera (14 

taxa). Preliminary analyses indicated that dissimilarity (based on Sørensen dissimilarity) in functional 

and phylogenetic communities were significantly correlated (Mantel test: r=0.87, p<0.001). 

Taxonomic alpha diversity was significantly negatively correlated with functional (Pearson 

correlation: r = -0.64, p<0.001; Fig.1a) and phylogenetic alpha diversity (Pearson correlation: r = - 

0.39, p<0.001; Fig. 1b). 

 

 

3.1 Alpha diversity 

One hydrological proximity effect (connectivity) and three local environmental variables (percentage 

coverage of submerged macrophytes, conductivity, percentage dissolved oxygen) were identified to 

significantly influence functional alpha diversity. No PCNM spatial filters significantly influenced 

functional alpha diversity and were subsequently removed from the variance partitioning analysis 

(Fig. 2a). A total of 37.6% of variation in functional alpha diversity was explained by local and spatial 

parameters, based on the adjusted R2. Local environmental variables (22.5%) was the only predictor 

group that significantly influenced functional alpha diversity and explained more of the statistical 

variation than hydrological proximity effects (0%), and landscape type (1.1%) 

 

Two PCNM spatial eigenvectors and one hydrological proximity effect (connectivity) were significant 

influences on phylogenetic alpha diversity. No local environmental variables significantly influenced 

phylogenetic alpha diversity and were excluded from the analyses. In total, 19.4% of variation in 

phylogenetic alpha diversity was explained by the variance partitioning model (Fig. 2b). PCNM 

Spatial filters (5.5%) was the only predictor group that significantly influence phylogenetic alpha 

diversity and accounted for more of the statistical variation than landscape type (1.4%) and 



hydrological proximity effects (0.8%; Fig. 2b). 

 

When taxonomic alpha diversity (richness) was examined, six local environmental variables (pond 

surface area, dry phase length, percentage coverage of submerged macrophytes and floating 

macrophytes, conductivity, and percentage of the pond margin shaded), two hydrological proximity 

effects (connectivity and pond isolation) and one PCNM spatial filter influenced taxonomic alpha 

diversity. A total of 74.4% of variation in taxonomic alpha diversity was explained by the local and 

spatial variables (Fig. 2c). Local environmental parameters alone significantly explained taxonomic 

alpha diversity more effectively (46%) than the hydrological proximity effects (0.3%) and the PCNM 

spatial filters (5.6%; Fig. 2c). 

 

3.2 Beta diversity 

Two significant PCNM spatial eigenvectors, two hydrological proximity effects (connectivity and 

pond isolation) and nine local environmental variables (pond surface area, dry phase length, dissolved 

oxygen concentration, percentage coverage of submerged macrophytes, emergent macrophytes and 

floating macrophytes, pH, conductivity, and percentage of the pond margin shaded) were identified to 

influence total phylogenetic beta diversity A total of 32.6% of the variation in total phylogenetic beta 

diversity was accounted for by local and spatial variables. Local environmental variables alone 

explained phylogenetic beta diversity more effectively (19.5%) than the PCNM spatial eigenvectors 

(0.9%) and hydrological proximity effects (1.4%; Fig. 3a). 

 

When the total functional beta diversity was examined, landscape type, one PCNM spatial eigenvector 

and five local environmental variables (pond surface area, dry phase length, dissolved oxygen 

concentration, percentage coverage of submerged macrophytes, and percentage of the pond margin 

shaded) were significant in influencing functional beta diversity and used in the variance partitioning 

analysis. A total of 31.5% of the variation in total functional beta diversity was explained by local and 

spatial variables. Local environmental variables accounted for a greater proportion of the variance in 

functional beta diversity (20.2%) than the landscape type (2.3%) or spatial eigenvectors (1.9%: Fig. 

3b). 

 

Three significant spatial eigenvectors, one hydrological proximity effect (connectivity) and nine local 

environmental variables (pond surface area, dry phase length, pond depth, percentage coverage of 

submerged macrophytes, emergent macrophytes and floating macrophytes, pH, conductivity, and 

percentage of the pond margin shaded) influenced pond phylogenetic turnover. A total of 18.7% of 

the variation in phylogenetic turnover could be explained by the local and spatial variables (Fig. 3c). 

Local environmental variables (9.9%) and hydrological proximity effects (0.7%) were the only 

predictor groups recorded to significantly influence phylogenetic turnover among ponds (Fig. 3c). 

 

A total of three local environmental variables (pond surface area, pond depth and the percentage 



coverage of submerged macrophytes) were identified to significantly influence the variance in 

functional turnover. No PCNM spatial eigenvectors or hydrological proximity effects influenced the 

variability in functional turnover and were excluded from the variance partitioning analysis. A total of 

10.9% of the variation in functional turnover was explained by local environmental variables and 

landscape type (Fig. 3d). Local environmental variables (7.7%) and landscape type (1.1%) both 

significantly influenced spatial patterns in functional turnover (Fig. 3d). 

 

Spatial patterns of phylogenetic nestedness were significantly influenced by five local environmental 

variables (pond surface area, dry phase length, conductivity, percentage of the pond margin shaded 

and the percentage coverage of submerged macrophytes), and one hydrological proximity effect (pond 

isolation). No PCNM spatial filters significantly influenced spatial patterns of phylogenetic 

nestedness and were excluded from the variance partitioning analysis (Fig. 3e). A total of 31.4% of 

the variation in phylogenetic nestedness could be explained by the local and spatial variables 

examined. Local environmental variables explained more of the variation in phylogenetic nestedness 

(22%) than hydrological proximity effects: (1.6%) and landscape type (1%; Fig. 3e). 

 

A total of five local environmental variables (pond surface area, dry phase length, dissolved oxygen 

concentration, percentage coverage of submerged macrophytes, and percentage of the pond margin 

shaded) one hydrological proximity effect (connectivity) and one PCNM spatial eigenvector 

influenced spatial patterns of functional nestedness. A total of 35.5% of the variation in functional 

nestedness was explained by the local and spatial variables (Fig. 3f). Local environmental variables 

(23.3%) explained more of the variation in spatial patterns of functional nestedness than landscape 

type (2.3%), hydrological proximity effects (0.7%), or the spatial eigenvectors (0.7%). 

 

       4. Discussion 

The results of this research have highlighted several ecologically important and interesting patterns 

that advance fundamental understanding on the phylogenetic, functional and taxonomic diversity 

patterns of lentic macroinvertebrate metacommunities. Taxonomic richness was most strongly 

explained by environmental variables, including pond surface area, dry phase length, macrophyte 

cover, conductivity and shading, which corresponds to the findings from multiple previous studies of 

small lentic waterbodies (including Oertli et al., 2002; Hassall et al., 2011; Heino, 2013; Heino et al., 

2017c). Many of these variables are directly or indirectly related to ‘area effects’ (MacArthur Wilson, 

1967), ‘disturbance effects’ (Vanshoenwinkel et al., 2013), and ‘environmental heterogeneity effects’ 

(Stein et al., 2014) on biodiversity, with increasing surface area, short dry periods and high 

macrophyte cover providing more habitat space (and structural complexity) for pond 

macroinvertebrates spatially and temporally. Taxonomic richness was also affected by hydrological 

proximity effects and spatial variables, but their unique effects were low. Similarly, functional alpha 

diversity was primarily driven by local environmental factors, and was minimally affected by spatial 

factors. Given the importance of dissolved oxygen and macrophyte cover in determining functional 



alpha diversity, this suggests that functional alpha diversity is locally determined by variables 

affecting macroinvertebrate traits responsible for respiration or traits that reflect adaptations to living 

in macrophyte beds (see Tachet et al., 2010). In contrast, phylogenetic alpha diversity was not 

significantly affected by local environmental factors but was most strongly correlated with spatial 

variables and secondarily with landscape type. This suggests that phylogenetic alpha diversity shows 

spatially-structured variation at the landscape-scale similar to that observed in previous studies 

conducted across broad spatial scales (Strecker et al., 2011; Cai et al., 2018). However, in our 

landscape-scale study, such spatial variation may be difficult to interpret as a signal of evolutionarily 

distinct lineages living in different parts of the study area, but rather as a sign that some spatially 

structured local environmental variables that influence phylogenetic alpha diversity were not 

accounted for in this study. 

 

Patterns in total beta diversity were not as strong as those for alpha diversity, which is typical of 

studies centred on community structure. In this study the percentage of variation explained by local 

and regional variables was <35%, but this figure has been frequently reported to be much lower in 

other comparable studies on freshwater ecosystems (Heino et al., 2015; Hill et al., 2017). However, 

previous studies examining community assembly in freshwaters have almost exclusively focussed on 

taxonomic community structure (e.g., Vanschoenwinkel et al., 2007; Viana et al., 2016), whereas we 

utilised information on phylogenetic and functional features of pond macroinvertebrate communities. 

Rarely have these two facets been tested concurrently to examine community structural variation, so 

reference points are difficult to find in the literature. Gianuca et al. (2018) found that all three facets 

and components of biodiversity of pond zooplankton communities varied along an urbanization 

gradient, with land use close to a pond and local environmental variables being responsible for 

generating variation in functional traits and phylogenetic relatedness. Rocha et al. (2018) reported that 

of the spatial, climatic, catchment and local environmental variables they examined, only local 

environmental and spatial variables were important in determining variation in taxonomically-, 

functionally- and phylogenetically-defined stream macroinvertebrate communities, broadly 

corresponding to the findings of this study. We found that total functional and phylogenetic beta 

diversities were mostly affected by local environmental variables, suggesting that trait selection and 

taxonomic relatedness (used in our study as a surrogate for phylogenetic biodiversity) were 

determined at the local pond scale. This finding is plausible, given the relatively small geographical 

scale of this research (c. 280 km2) and the fact that at small spatial-scales, these facets should be 

predominantly shaped by environmental controls (Heino and Tolonen 2017b). 

 

Variation in the turnover and nestedness-resultant components of taxonomic, functional and 

phylogenetic beta diversity were primarily determined by local environmental variables. Given that 

very few studies that have focussed on the turnover and nestedness components of beta diversity in 

freshwater ecosystems, broad comparisons are not possible. However, Gianuca et al. (2017) reported 

that local environmental factors, in terms of nutrient enrichment, negatively affected local taxonomic 



zooplankton diversity. This produced a pattern of beta diversity derived from nestedness in 

unconnected and environmentally heterogeneous landscapes. Increasing dispersal resulted in a weak 

pattern of nestedness, with the replacement component of beta diversity increasing in importance. Our  

findings did not provide as clear indications as Gianuca et al.’s (2017) study regarding the separation 

of the effects of dispersal and local environmental factors on the turnover and nestedness components 

of beta diversity. However, we found that the nestedness-resultant components of both functional and 

phylogenetic beta diversity were better explained by the predictor variables compared to the turnover 

components. For both components, pond surface area, dry phase length and macrophyte cover 

remained the most important predictors of beta diversity. This finding suggests that these are ‘master’ 

variables governing variation in pond macroinvertebrate communities, corroborating the findings of 

numerous previous studies (Rundle et al., 2002; Biggs et al., 2005; Hassall et al., 2011; Florencio et 

al., 2014; Hill et al., 2015; Heino and Tolonen, 2017b; Hill et al., 2017). 

 

4.1 Implications for biodiversity conservation 

Our study has direct implications for the conservation of pond biodiversity in human-modified 

landscapes characterised by multiple land-use types. First, it would be advisable for management 

activities to focus on improving or restoring local environmental conditions to support locally diverse 

pond faunas at a landscape-scale through increased environmental heterogeneity. For example, major 

foci should be pond surface area, depth, macrophyte cover and variation in hydroperiod length (Biggs 

et al., 2005; Hassall et al., 2011; Florencio et al., 2014; Thornhill et al., 2018). This is important 

because taxonomic and functional alpha diversity were primarily determined by local environmental 

conditions. In particular, increasing pond surface area and the coverage of submerged macrophytes 

will promote functional and taxonomic alpha diversity. However, given that no single site can support 

all species in a regional pool, promoting environmental heterogeneity among ponds should result in 

high levels of taxonomic, functional and phylogenetic beta diversity (Sayer et al., 2012). In addition, 

spatial effects were highlighted to be important for phylogenetic alpha diversity, but not for functional 

or taxonomic diversity. This low amount of variation in community data explained may be because 

measuring between-site connectivity (and consequent dispersal) is particularly difficult  (Heino et al., 

2017d). Consequently, more accurate measurements of the spatial structure of pond networks, may 

highlight a stronger influence of spatial structuring on biodiversity. Hence, increasing knowledge of 

connectivity effects on pond biodiversity (Oertli et al., 2008; Ribeiro et al., 2011) should also be a 

priority for conservation at a landscape-scale. 

 

Recently, Cai et al., (2018) analysed broad-scale congruence among species richness, functional 

diversity and phylogenetic diversity using an approach similar to that reported here. They proposed 

that, as conservation planning is typically limited by available resources, defining priorities that 

simultaneously protect all biodiversity facets would be a desirable goal. Findings from some studies 

highlight that different facets of alpha diversity may be strongly correlated across broad spatial scales 

(e.g. Heino et al., 2008; Strecker et al., 2011), which suggests that protecting all facets and 



components of biodiversity simultaneously could be achieved by focussing on the protection of 

species richness. However, contradictory results have also emerged in studies at both national (Cai et 

al., 2018) and regional scales (Heino et al., 2005), where different facets of alpha diversity were 

weakly correlated. Our results demonstrate that for pond macroinvertebrates both functional and 

phylogenetic alpha diversity were negatively correlated with species richness. This pattern may be 

driven by the properties of each facet of diversity whereby increases in species richness and functional 

diversity may only generate a small change in phylogenetic diversity (Cai et al. 2018). Furthermore, 

the negative association between taxonomic richness and functional diversity may be driven by high 

redundancy or high niche differentiation within the regional metacommunity (Siqueira et al. 2012; 

Wellnitz and Poff 2001). Implementing conservation strategies using a single facet of diversity 

(typically taxonomic richness) as a cure-for-all should be avoided (Devictor et al., 2010). Instead, our 

results suggested that the three distinct facets of alpha diversity cannot be used as good surrogates of 

one another, but rather that conservation of pond macroinvertebrate biodiversity in human-modified 

landscapes requires a multi-faceted approach incorporating different biodiversity facets. However, 

focussing conservation efforts exclusively on different facets of alpha diversity is also unlikely to be 

effective. Quantifying the beta diversity (total, turnover and nestedness-resultant  components) of the 

different biodiversity facets facilitates a more accurate and complete assessment of compositional 

variation, and the identification of the most suitable locations for biodiversity conservation that 

incorporate all diversity facets (Socolar et al., 2016). Indeed, high beta diversity is typically associated 

with high gamma diversity and, therefore, focussing conservation actions on maintaining both beta 

and gamma diversity should be a priority (Bush et al., 2016). This can likely be achieved by 

guaranteeing environmental heterogeneity among ponds at the landscape-scale. An integrative 

approach that combines taxonomic, phylogenetic and functional facets of alpha and beta diversity will 

provide more efficient and effective biodiversity conservation strategies that maximise the amount of 

biodiversity protected and ecological resilience. 

 

Our approach will help the understanding of biodiversity–environment relationships that are 

fundamental for linking theory to management and the development of sound management actions for 

ponds in the face of environmental change. As global change threatens biodiversity and ultimately 

ecosystem services humans are relying on (IPBES 2019), we suggest that future studies should 

incorporate functional and phylogenetic diversity to characterise ecosystem functions and services. 

Doing so, would also help predict how global change will alter the functioning and evolutionary 

capability of pond biota in the future. 
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Tables 

Table 1. Descriptive statistics of measured environmental variables and biodiversity indices across the 95 

ponds selected for study. MPD = mean pairwise distance, SES = standard effects size. 

 
Mean 

Standard 

Deviation 

Coefficient of 

Variation 
Minimum Maximum 

Area (m
2
) 552.4 1457 263.7 0.8 9309 

Depth (cm) 60.7 54.9 90.4 4 >100 

Pond Margin Shaded (%) 23.4 32.6 139.1 0 100 

Emergent Macrophytes (%) 23.6 27.6 116.9 0 100 

Submerged Mactophytes 

(%) 
23.1 23.6 102.2 0 100 

Floating Macrophytes (%) 9.2 19.3 210.4 0 96.7 

pH 7.8 0.6 8 6.2 9.8 

Conductivity 567.2 302.9 53.4 63.7 1494 

Dissolved Oxygen (%) 75.3 24.7 32.8 13.1 131.6 

Pond Isolation 9 7 77.4 0 30 

Pond Connectivity 3 4.7 178.1 0 14 

Phylogenetic MPD 80.8 5.8 7.1 66.7 100 

Phylogenetic MPD SES 1.3 1.2 96.4 −2.3 3.9 

Functional MPD 0.27 0.02 8.6 0.24 0.35 

Functional MPD SES 1.15 0.99 87.2 −1.81 2.85 

Taxonomic Richness 
     

 
 
 
 
 
 
 
 

 

 

Figure legends 

Figure 1. Scatter plots of species richness and (a) functional alpha diversity and (b) phylogenetic 

alpha diversity. 

Figure 2. The relative contribution of PCNM eigenvectors, hydrological proximity effects, landscape 

type (urban/non-urban) and local environmental variables to: (a) functional alpha diversity (mean 

pairwise distance), (b) phylogenetic alpha diversity (mean pairwise distances), and (c) taxonomic 

alpha diversity. Negative fractions are not presented in the figure. Values represent the adjusted R2 

values. 

Figure 3. The relative contribution of PCNM eigenvectors, hydrological proximity effects, landscape 

type (urban/non-urban) and local environmental variables to: (a) total phylogenetic beta diversity, (b) 

total functional beta diversity, (c) phylogenetic turnover, (d) functional turnover, (e) the nestedness 

component of phylogenetic beta diversity, and (f) the nestedness component of functional beta 

diversity. Negative fractions are not presented in the figure. Values represent the adjusted R2 values. 
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