68 research outputs found

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18

    The effects of a hydrogen-rich ground cover on cosmogenic thermal neutrons:Implications for exposure dating

    Get PDF
    We present results of thermal neutron flux measurements in experimental granite piles that were tailored to study the effect of hydrogen-rich covers on that flux. We find that hydrogen-rich covers (polyethylene, water), used as proxies for snow, dead and/or live plant matter, increase the thermal neutron flux in an underlying rock surface significantly, as compared to the state without cover. The rock serves as the main source for thermal neutrons, the hydrogen-rich cover as a neutron reflector. In situations where the thickness of such a cover would be negligible in terms of high-energy neutron (>10 MeV) attenuation, e.g. 2-3 cm water equivalent cover, a significant enhancement of the thermal neutron flux (factor >2.5 +/- 0.5) can be achieved. This increase is made up of three components (Masarik et al., 2007): (1) reflected thermal neutrons (albedo neutrons), (2) moderated fast neutrons from the ground, and (3) moderated fast neutrons from the atmospheric cascade (Masarik et al., 2007). The higher thermal neutron flux increases the production rates of those cosmogenic nuclides that have a significant thermal neutron production pathway (He-3, Cl-36, Ca-41) Ignoring this effect in situations where target nuclei (Li-6, Cl-36, Ca-40) are abundant will severely underestimate production rates. The effect of hydrogenrich ground cover on the thermal neutron flux has the potential to be used for studies that are aimed at reconstructing the persistence of past plant/snow cover. Isotopic ratios of spallogenic versus predominantly thermal neutron produced nuclides, would reveal the presence or absence of hydrogen-rich cover in the past as compared to the present-day situation. (C) 2013 Elsevier B.V. All rights reserved

    Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating

    Get PDF
    The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model

    Geological scatter of cosmogenic-nuclide exposure ages in the Shackleton Range, Antarctica: implications for glacial history

    Get PDF
    We use cosmogenic 26Al/10Be ratios in rocks from the Shackleton Range, Antarctica to investigate geological scatter, a challenge that faces exposure-age studies in Antarctica. Examining the scatter helps reveal the long-term lowering of Slessor Glacier, an outlet glacier of the East Antarctic Ice Sheet (EAIS) which flows into the Weddell Sea embayment. 144 26Al and 10Be exposure ages from 72 samples are related to bedrock or clast sample characteristics and geomorphological measures of weathering, slope and stability. We explore this noisy dataset by using Principal Components Analysis (PCA) to identify patterns in the data. Despite noise, there exist correlations between age and degree of weathering and age and elevation above the adjacent ice surface. Clasts with young exposure ages have more complex exposure histories than those with old exposure ages. In terms of glacial history we show that (a) warm-based ice covered the upper slopes of the Shackleton Range millions of years ago and that the uplands have been mainly free of ice for more than 800 ka, (b) that Slessor Glacier's surface elevation was c. 150 m above present at c. 270 ka and c. 700 ka

    Screening for autism spectrum disorders with the brief infant-toddler social and emotional assessment

    Get PDF
    Objective: Using parent-completed questionnaires in (preventive) child health care can facilitate the early detection of psychosocial problems and psychopathology, including autism spectrum disorders (ASD). A promising questionnaire for this purpose is the Brief Infant-Toddler Social and Emotional Assessment (BITSEA). The screening accuracy with regard to ASD of the BITSEA Problem and Competence scales and a newly calculated Autism score were evaluated. Method: Data, that was collected between April 2010 and April 2011, from a community sample of 2-year-olds (N = 3127), was combined with a sample of preschool children diagnosed with ASD (N = 159). For the total population and for subgroups by child's gender, area under the Receiver Operating Characteristic (ROC) curve was examined, and across a range of BITSEA Problem, Competence and Autism scores, sensitivity, specificity, positive and negative likelihood ratio's, diagnostic odds ratio and Youden's index were reported. Results: The area under the ROC curve (95% confidence interval, [95%CI]) of the Problem scale was 0.90(0.87-0.92), of the Competence scale 0.93(0.91-0.95), and of the Autism score 0.95(0.93-0.97). For the total population, the screening accuracy of the Autism score was significantly better, compared to the Problem scale. The screening accuracy of the Competence scale was significantly better for girls (AUC = 0.97; 95%CI = 0.95-0.98) than for boys (AUC = 0.91; 95%CI = 0.88-0.94). Conclusion: The results indicate that the BITSEA scales and newly calculated Autism score have good discriminative power to differentiate children with and without ASD. Therefore, the BITSEA may be helpful in the early detection of ASD, which could have beneficial effects on the child's development

    Central Santa Catarina coastal dunefields chronology and their relation to relative sea level and climatic changes

    Get PDF
    During the past decades, there have been contrarian explanations for the formation and stabilization of coastal dunefields: while many authors believe the dunes formation would be enhanced by falling sea level, others argue that a rising or stable sea level context would be favorable. For Brazilian coastal dunefields, the second hypothesis seems to be more consistent with the luminescence ages found so far; however, most of these data were obtained without using the SAR protocol. Another point of concern is the role of climate change in the aeolian system, which is still not very clear. The aim of this paper is to try to clarify these two questions. To this end, five coastal dunefields were selected in central Santa Catarina coast. The remote sensing and dating results allowed the discrimination and mapping of at least four aeolian generations. Their age distribution in relation to the global curve of relative sea level variation during the Late Pleistocene allows us to suggest that the formation of Aeolian dunefields in the coastal context is supported by stable relative sea level. However, relative sea level is not the only determinant for the formation and preservation of the aeolian coastal dunes. Evidences of climatic control indicate that the initiation of dunefields would be favored by periods of less humidity while their stabilization would occur preferably during the periods of rain intensification, connected to monsoon activity

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community
    • 

    corecore