57 research outputs found

    Morphine Metabolism in Human Skin Microsomes

    Get PDF
    For patients with severe skin wounds, topically applied morphine is an option to induce efficient analgesia due to the presence of opioid receptors in the skin. However, for topical administration it is important to know whether the substance is biotransformed in the skin as this can eventually reduce the concentration of the active agent considerably. We use skin microsomes to elucidate the impact of skin metabolism on the activity of topically applied morphine. We are able to demonstrate that morphine is only glucuronidated in traces, indicating that the biotransformation in the skin can be neglected when morphine is applied topically. Hence, there is no need to take biotransformation into account when setting up the treatment regimen. Copyright (C) 2012 S. Karger AG, Base

    Structure-function studies of the UV-B photoreceptor UVR8 in Arabidopsis thaliana

    Get PDF
    UV-B radiation is an integral component of natural sunlight reaching the Earth’s surface. Although being a potentially harmful and damaging agent, UV-B is a key environmental signal for plants initiating diverse responses that affect their metabolism, development and viability. The majority of these responses involve the differential regulation of gene expression and all require accurate perception of the effective light quality by a photoreceptor. The recent identification of UV RESISTANCE LOCUS8 (UVR8) as a UV B photoreceptor has been an important milestone in plant UV B research (Rizzini et al., 2011; Christie et al., 2012; Wu et al., 2012). The aim of this study was to investigate how the structure of the UVR8 protein determines its function in the UV-B response in Arabidopsis

    Evaluation of Canine S100A12 and sRAGE as Novel Disease

    Get PDF
    Inflammatory bowel disease (IBD) is a common condition in dogs that is challenging to diagnose. A dysregulated innate immunity plays a major role in its pathogenesis, and surrogate inflammatory markers that reflect disease severity would be clinically useful. S100A12, a damage-associated molecular pattern molecule, is involved in phagocyte activation. S100A12 binds to the receptor of advanced glycation end products (RAGE), a pattern-recognition receptor, and results in human studies suggest a role of S100A12 and RAGE in chronic inflammation. Soluble RAGE (sRAGE), a decoy receptor, functions as an anti-inflammatory molecule. S100A12 and RAGE/sRAGE have not been studied in canine IBD. Canine S100A12 has not been purified, and while an immunoassay for measurement of S100A12 in humans is available, human antibodies do not cross-react with canine S100A12 (cS100A12). Canine RAGE has been cloned and characterized. The aims of this project were to purify and partially characterize cS100A12, to develop and analytically validate an immunoassay for cS100A12, and to determine the relationship between cS100A12 and systemic sRAGE concentrations and clinical, endoscopic, and histologic disease severity in dogs with IBD. Markers of gastrointestinal inflammation were also evaluated in dogs with acute hemorrhagic diarrhea syndrome (AHDS). Canine S100A12 was successfully purified from canine whole blood, and a competitive liquid-phase radioimmunoassay was developed and analytically validated. Fecal cS100A12 concentrations were shown to be increased in dogs with IBD and were associated with clinical disease activity, the severity of endoscopic lesions, and the severity of colonic inflammation. Serum sRAGE concentrations were decreased in dogs with IBD, but were not correlated with disease severity, cS100A12 concentrations, or outcome. Dogs that were euthanized had higher fecal cS100A12 concentrations than dogs that were alive at the end of the study, and serum sRAGE concentrations increased only in IBD dogs with complete clinical remission. A significant but transient increase in fecal cS100A12 was also seen in dogs with AHDS. Fecal cS100A12 may be clinically useful as a biomarker of inflammation in dogs with IBD, and the sRAGE/RAGE axis appears to be altered in canine IBD. Lack of correlation between sRAGE and cS100A12 is consistent with sRAGE being a non-specific decoy receptor

    Hyperhomocysteinemia in greyhounds and its association with hypofolatemia and other clinicopathologic variables

    Get PDF
    Background: Folate and cobalamin are essential cofactors for homocysteine (HCY) metabolism. Hyperhomocysteinemia, a multifactorial condition, may reflect B vitamin deficiency and is associated with increased risk of cardiovascular disease, thrombosis, and neurodegenerative and chronic gastrointestinal diseases in humans. Hyperhomocysteinemia has been reported in Greyhounds with suspected chronic enteropathy. Objectives: To evaluate the frequencies of and the association between hypofolatemia and hyperhomocysteinemia in Greyhounds. Animals: Data and serum samples from 559 Greyhounds. Methods: Nested case-control study. The frequency of hypofolatemia in Greyhounds was determined by a laboratory database search. The relationship between hyperhomocysteinemia (measured by gas chromatography-mass spectrometry) and hypocobalaminemia and hypofolatemia was evaluated, and its frequency compared between healthy Greyhounds and Greyhounds with thrombosis or chronic diarrhea. Results: Hypofolatemia was identified in 172 of 423 (41%) Greyhounds and was more common in hypo- than in normocobalaminemic dogs (49% vs. 35%; P = .0064). Hyperhomocysteinemia was detected in 53 of 78 (68%) of Greyhounds, being more common in hypo- than in normofolatemic dogs (88% vs. 59%; P = .0175). All healthy Greyhounds, 21 of 30 (70%) of dogs with chronic diarrhea and 6 of 8 (75%) of those with thrombosis, were hyperhomocysteinemic. Serum HCY concentrations were inversely correlated with serum folate concentration (q = -0.28; P = .0386) and were positively associated with serum albumin concentration (q = 0.66; P = .0022). Conclusions and Clinical Relevance: Hyperhomocysteinemia occurs frequently in the Greyhound population. Its association with hypofolatemia suggests decreased intracellular availability of B vitamins, but the functional implications warrant further investigation. Hyperhomocysteinemia in Greyhounds potentially may serve as a spontaneous canine model to further investigate hyperhomocysteinemia in humans

    Genetic Contribution to Alcohol Dependence: Investigation of a Heterogeneous German Sample of Individuals with Alcohol Dependence, Chronic Alcoholic Pancreatitis, and Alcohol-Related Cirrhosis

    Get PDF
    The present study investigated the genetic contribution to alcohol dependence (AD) using genome-wide association data from three German samples. These comprised patients with: (i) AD; (ii) chronic alcoholic pancreatitis (ACP); and (iii) alcohol-related liver cirrhosis (ALC). Single marker, gene-based, and pathway analyses were conducted. A significant association was detected for the ADH1B locus in a gene-based approach (puncorrected = 1.2 × 10−6; pcorrected = 0.020). This was driven by the AD subsample. No association with ADH1B was found in the combined ACP + ALC sample. On first inspection, this seems surprising, since ADH1B is a robustly replicated risk gene for AD and may therefore be expected to be associated also with subgroups of AD patients. The negative finding in the ACP + ALC sample, however, may reflect genetic stratification as well as random fluctuation of allele frequencies in the cases and controls, demonstrating the importance of large samples in which the phenotype is well assessed

    Distance decay 2.0-A global synthesis of taxonomic and functional turnover in ecological communities

    Get PDF
    Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments

    GWAS of Suicide Attempt in Psychiatric Disorders Identifies Association With Major Depression Polygenic Risk Scores

    Get PDF
    Objective: Over 90% of suicide attempters have a psychiatric diagnosis, however twin and family studies suggest that the genetic etiology of suicide attempt (SA) is partially distinct from that of the psychiatric disorders themselves. Here, we present the largest genome-wide association study (GWAS) on suicide attempt using major depressive disorder (MDD), bipolar disorder (BIP) and schizophrenia (SCZ) cohorts from the Psychiatric Genomics Consortium. Method: Samples comprise 1622 suicide attempters and 8786 non-attempters with MDD, 3264 attempters and 5500 non-attempters with BIP and 1683 attempters and 2946 non-attempters with SCZ. SA GWAS were performed by comparing attempters to non-attempters in each disorder followed by meta-analyses across disorders. Polygenic risk scoring was used to investigate the genetic relationship between SA and the psychiatric disorders. Results: Three genome-wide significant loci for SA were found: one associated with SA in MDD, one in BIP, and one in the meta-analysis of SA in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with SA in MDD (R2=0.25%, P=0.0006), BIP (R2=0.24%, P=0.0002) and SCZ (R2=0.40%, P=0.0006). Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size hold potential to robustly identify genetic associations and gain biological insights into the etiology of suicide attempt

    A large-scale genome-wide association study meta-analysis of cannabis use disorder

    Get PDF
    Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    corecore