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ment can cause typical opioid-related adverse effects 
such as constipation or sedation. The presence of opioid 
receptors in peripheral structures like sensory nerve 
endings, melanocytes, normal human keratinocytes 
and fibroblasts  [1–4]  in principle allows for a treatment 
with topically applied opioids in order to gain efficient 
analgesia and to avoid systemic side effects. Several clin-
ical studies on topically applied opioids in severe skin 
wounds have shown that efficient analgesic effects can 
be obtained [for review, see  5, 6 ]. Nevertheless, the fail-
ing success in some studies raises the question of inad-
equate morphine delivery or local morphine biotrans-
formation [for review, see  5 ]. Biotransformation of mor-
phine in the skin has not yet been studied although skin 
metabolism has been shown to activate or inactivate xe-
nobiotics  [7–9] , which is a relevant parameter for the ef-
ficiency and tolerability of a treatment regimen. In the 
liver, morphine is mainly metabolized to morphine-3- 
and morphine-6-glucuronide by UDP-glucuronosyl-
transferase (UGT)2B7  [10] . Expressed in traces in nor-
mal human dermal fibroblasts and normal human ke-
ratinocytes on the mRNA level  [11, 12] , UGT2B7 may 
also metabolize morphine when applied onto the skin. 
Moreover, the relevance of strongly expressed and active 
UGT1  [13]  needs to be considered as a potential source 
of morphine glucuronidation.
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 Abstract 

 For patients with severe skin wounds, topically applied mor-
phine is an option to induce efficient analgesia due to the 
presence of opioid receptors in the skin. However, for topical 
administration it is important to know whether the sub-
stance is biotransformed in the skin as this can eventually 
reduce the concentration of the active agent considerably. 
We use skin microsomes to elucidate the impact of skin me-
tabolism on the activity of topically applied morphine. We 
are able to demonstrate that morphine is only glucuronidat-
ed in traces, indicating that the biotransformation in the skin 
can be neglected when morphine is applied topically. Hence, 
there is no need to take biotransformation into account 
when setting up the treatment regimen. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Severe skin wounds, as in the case of burn patients, 
are associated with strong pain and very often require 
treatment with systemically applied opioids. This treat-
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  Materials and Methods 

 Materials/Equipment 
 Human skin microsomes were obtained from Biopredic Inter-

national (Rennes, France); liver microsomes (BD UltraPool TM  
HLM 150) and UGT reaction mix solution were purchased from 
BD Biosciences (Woburn, Mass., USA);  � -glucuronidase type 
HP-2 was obtained from Sigma-Aldrich (Schnelldorf, Germany), 
and morphine HCl and hydromorphone HCl were purchased 
from Fagron (Hamburg, Germany). Stock solutions for HPLC 
analysis and glucuronidation assay were prepared in a mixture of 
0.05  M  potassium hydrogen phosphate buffer (pH 4.9) and aceto-
nitrile (90:   10) and remained stable at –20 ° C for up to 3 months. 
The chemicals were of highest quality.

  For morphine quantification HPLC instruments from Merck 
Hitachi (Tokyo, Japan) were used (autosampler L-7200, interface 
D-7000, pump L-7100, UV detector L-7400, fluorescence detector 
L-7480 and HSM software D-7000). Column (LiChhroCART �  
250-4 RP-8.5  � m) and precolumn (LiChroCART 4-4) were pur-
chased from Merck (Darmstadt, Germany).

  Methods 
 Morphine Glucuronidation Assay 
 UGT reaction mix solution A (containing uridine 5 � -

diphospho-glucuronic acid, UDPGA, 2 m M ), UGT reaction mix 
solution B (containing Tris HCl 50 m M , MgCl 2  8 m M , alamethicin 
25  � g/ml; final concentrations) and morphine stock solution (ei-
ther 0.1 or 0.01 m M  in incubation) were preincubated for 5 min at 
37   °   C. Human skin microsomes (200  � g) were added for a final 
volume of 200  � l. After an incubation period of 2 h at 37   °   C the 
reaction was stopped by the addition of 100  � l ice-cold 18.5% HCl. 
After centrifugation at 10,000  g  for 2 min, the supernatant was 
removed and neutralized using 1 N NaOH. Pooled liver micro-
somes were used as a positive control. Blank controls (no micro-
somes added) and negative controls (no morphine added) were 
also studied.

  For the quantification of metabolites (morphine-3- and mor-
phine-6-glucuronide) a  � -glucuronidation assay was performed. 
The samples were divided into two aliquots. One aliquot was in-
cubated for 72 h at 37   °   C with a double volume of 400 U/ml  � -
glucuronidase in McIlvaine’s buffer (pH 5.0) and the other with 
McIlvaine’s buffer only. Reaction was stopped by adding 1 N 
NaOH and the pH was adjusted to 9.5. The morphine content was 
determined after ethyl acetate extraction using HPLC UV/fluo-
rescence measurement and hydromorphone as the internal stan-
dard. The liquid phase was potassium hydrogen phosphate buffer 
(pH 4.9; 92%) and acetonitrile (8%). Fluorescence intensity (ex-
tinction 235 nm, emission 345 nm) was measured for the quanti-
fication of morphine (retention time: 6.5 min) and UV detection 
(210 nm) was used for hydromorphone (retention time: 10.5 min). 
The range of linearity is 0.1–100  �  M  for morphine and 1–100  �  M  
for hydromorphone (R 2   6 0.99), respectively. Interday and intra-
day variabilities are suitable (SD rel   ̂  12%)  [14] . For the quantifica-
tion of the metabolites the following equation was used:

  [ME] = ([Mor] +  – [Mor] – )  !  2

  [ME] = amount of metabolites; [Mor] + /[Mor] –  = the amount of 
morphine with and without incubation with  � -glucuronidase. 

 Results and Discussion 

 Morphine Metabolism 
 For the development of a drug for topical use it is im-

portant to take the biotransformation in the skin into ac-
count. The biotransformation of morphine in the liver 
leads to the formation of the active metabolite morphine-
6-glucuronide and the inactive morphine-3-glucuronide. 
UGT2B7 is the dominating enzyme responsible for the 
glucuronidation of morphine, but an involvement of
UGT1A1, 1A3, 1A6, 1A8, 1A9 and 1A10 is also possible. 
Furthermore, the formation of normorphine by CYP3A4 
and CYP2C8 has to be considered  [10] . PCR studies re-
vealed UGT2B7 expression in extra hepatic tissues like 
the kidneys, mammalian glands, lung and the small in-
testine  [16] . To date almost nothing is known about the 
expression of UGT2B7 in the skin. The enzyme expres-
sion on mRNA level  [11]  in traces in normal human ke-
ratinocytes and normal human dermal fibroblasts, as 
well as in the human epidermis and in the Episkin TM  skin 
model  [16] , indicates that morphine may be biotrans-
formed in the skin – but most likely to a lower extent. 
Moreover, morphine is not biotransformed in human ca-
daver skin which was obtained 24–48 h postmortem  [17] . 
Thus, the storage of the skin may reduce enzyme activity 
significantly.

  In order to confirm the expected poor morphine me-
tabolism in the skin we investigated morphine glucuron-
idation using human skin microsomes. One batch was 
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  Fig. 1.  Morphine glucuronidation after 2 h incubation with 200 
 � g of liver or skin microsomes. The liver microsomes metabo-
lized morphine extensively, whereas the skin microsomes trans-
formed morphine only to a minor extent.   
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obtained from a female donor (66 a); the other batch rep-
resented a pool of two female donors (36 a and 56 a). In 
accordance with previous results  [11] , we investigated two 
morphine concentrations in the microsome assay. Micro-
somal glucuronidation assays are commonly used for 
biotransformation studies of chemicals and active phar-
maceutical substances such as morphine, acetaminophen 
and testosterone  [18, 19] . In order to ensure that both 
types of microsomes are active, testosterone was incu-
bated to prove the CYP activity (data not shown). We per-
formed a  � -glucuronidase assay for the quantification of 
morphine-6- and morphine-3-glucuronide; the distinc-
tion between both metabolites is not possible with this 
method. Incubation (2 h) of microsomal protein 200  � g 
and 0.1 or 0.01 m M  of morphine resulted in negligible 
metabolite formation (1.7  8  4.5 and 0.2  8  6.3%, respec-
tively), whereas liver microsomes generated 24.6  8  9.4 
and 20.6  8  2.8% metabolites ( fig. 1 ). Thus, the results of 
the mRNA expression study were confirmed: morphine 
is only marginally biotransformed in human skin. How-
ever, the poor morphine glucuronidation in human skin 
clearly differs from the 4-me thylumbelliferone metabo-
lism  [13] , a preferential substrate of UGT1 which is well 
expressed in reconstructed human epidermis. Since skin 
microsomes are not only comprised of UGT2B7 but also 
of all other enzymes present in the skin, major morphine 

inactivation after topical application can be excluded. Yet 
hepatic biotransformation will metabolize percutaneous-
ly absorbed morphine. Although reconstructed human 
epidermis was proven to be predictive for human skin 
with respect to phase I  [20]  and phase II  [13]  biotransfor-
mation, morphine metabolism in the skin should be in-
vestigated further in in vivo studies to support our find-
ings. This would involve using the microdialysis tech-
nique to measure the formation of morphine 3- and 
morphine-6-glucuronide after the topical application. 

  Conclusion 

 Topically applied morphine is an option to achieve ef-
ficient pain relief for patients with severe skin wounds 
associated with severe pain. Since morphine is only me-
tabolized in traces in the skin, biotransformation can be 
neglected for the development of a topical morphine for-
mulation.
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