6 research outputs found

    Imaging polarimetry of the fogbow: polarization characteristics of white rainbows measured in the high Arctic

    No full text
    The knowledge on the optics of fogbows is scarce, and their polarization characteristics have never been measured to our knowledge. To fill this gap we measured the polarization features of 16 fogbows during the Beringia 2005 Arctic polar research expedition by imaging polarimetry in the red, green and blue spectral ranges. We present here the first polarization patterns of the fogbow. In the patterns of the degree of linear polarization p, fogbows and their supernumerary bows are best visible in the red spectral range due to the least dilution of fogbow light by light scattered in air. In the patterns of the angle of polarization α fogbows are practically not discernible because their α-pattern is the same as that of the sky: the direction of polarization is perpendicular to the plane of scattering and is parallel to the arc of the bow, independently of the wavelength. Fogbows and their supernumeraries were best seen in the patterns of the polarized radiance. In these patterns the angular distance δ between the peaks of the primary and the first supernumerary and the angular width σ of the primary bow were determined along different radii from the center of the bow. δ ranged between 6.08° and 13.41° , while σ changed from 5.25° to 19.47° . Certain fogbows were relatively homogeneous, meaning small variations of δ and σ along their bows. Other fogbows were heterogeneous, possessing quite variable δ- and σ-values along their bows. This variability could be a consequence of the characteristics of the high Arctic with open waters within the ice shield resulting in the spatiotemporal change of the droplet size within the fo

    Spottier Targets Are Less Attractive to Tabanid Flies: On the Tabanid-Repellency of Spotty Fur Patterns

    No full text
    During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid host

    A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging

    Get PDF
    We propose a non-permanent add-on that enables plenoptic imaging with standard cameras. Our design is based on a physical copying mechanism that multiplies a sensor image into a number of identical copies that still carry the plenoptic information of interest. Via different optical filters, we can then recover the desired information. A minor modification of the design also allows for aperture subsampling and, hence, light-field imaging. As the filters in our design are exchangeable, a reconfiguration for different imaging purposes is possible. We show in a prototype setup that high dynamic range, multispectral, polarization, and light-field imaging can be achieved with our design

    B. Sprachwissenschaft

    No full text
    corecore